TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON GATE CMOS

512-MBIT (64 M \times 8 BITS) CMOS NAND E²PROM

DESCRIPTION

The device is a single 3.3 V 512-Mbit (553,648,128 bits) NAND Electrically Erasable and Programmable Read-Only Memory (NAND E^2 PROM) organized as 528 bytes × 32 pages × 4096 blocks. The device has a 528-byte static register which allows program and read data to be transferred between the register and the memory cell array in 528-byte increments. The Erase operation is implemented in a single block unit (16 Kbytes + 512 bytes: 528 bytes × 32 pages).

The device is a serial-type memory device which utilizes the I/O pins for both address and data input/output as well as for command inputs. The Erase and Program operations are automatically executed making the device most suitable for applications such as solid-state file storage, voice recording, image file memory for still cameras and other systems which require high-density non-volatile memory data storage.

FEATURES

Organization

 $\begin{array}{ll} \text{Memory cell array} & 528 \times 128 \text{K} \times 8 \\ \text{Register} & 528 \times 8 \\ \text{Page size} & 528 \text{ bytes} \\ \text{Block size} & (16 \text{K} + 512) \text{ bytes} \end{array}$

Modes

Read, Reset, Auto Page Program, Auto Block Erase, Status Read,

Mode control

Serial input/output Command control • Power supply $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$

· Access time

Cell array to register 30 µs max Serial Read Cycle 50 ns min

• Operating current

Read (50 ns cycle) 30 mA max Program (avg.) 30 mA max Erase (avg.) 30 mA max Standby 50 µA max

Package

TSOP I 48-P-1220-0.50 (Weight: 0.53g typ.)

PIN ASSIGNMENT (TOP VIEW)

NC 🗆	1 ()	48	
NC 🗆	2	47	
NC 🗆	3	46	
NC 🗆	4	45	
NC 🗆	5	44	1/O8
NC =	6	43	
RY/BY □	7	42	1/06
RE 🗆	8	41	1/05
RE CE	9	40	
	10	39	NC
NC 🗆	11	38	NC:
V _{CC} □	12	37	
Vss 🗆	13	36	J Vss
	14	35	1 NC
NC 🗆	15	34	NC
CLE d	16	33	NC
	17	32	1/04
WE	18	31	
	19	30	
	20	29	
NC =	21	28	
NC =	22	27	
	23	26	
	24	25	NC
.,0 4			

PIN NAMES

I/O1 to I/O8	I/O port
CE	Chip enable
WE	Write enable
RE	Read enable
CLE	Command latch enable
ALE	Address latch enable
WP	Write protect
RY/ BY	Ready/Busy
V _{CC}	Power supply
V _{SS}	Ground

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	VALUE	UNIT
V _{CC}	Power Supply Voltage	-0.6 to 4.6	V
V _{IN}	Input Voltage	-0.6 to 4.6	V
V _{I/O}	Input/Output Voltage	-0.6 V to V _{CC} + 0.3 V (≤ 4.6 V)	٧
P_{D}	Power Dissipation	0.3	W
T _{solder}	Soldering Temperature (10 s)	260	°C
T _{stg}	Storage Temperature	–55 to 125	°C
T _{opr}	Operating Temperature	0 to 70	°C

CAPACITANCE *(Ta = 25°C, f = 1 MHz)

SYMB0L	PARAMETER	CONDITION	MIN	MAX	UNIT
C _{IN}	Input	$V_{IN} = 0 V$	_	10	pF
C _{OUT}	Output	V _{OUT} = 0 V	_	10	pF

^{*} This parameter is periodically sampled and is not tested for every device.

VALID BLOCKS (1)

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
N _{VB}	Number of Valid Blocks	4016	_	4096	Blocks

⁽¹⁾ The device occasionally contains unusable blocks. Refer to Application Note (14) toward the end of this document.

RECOMMENDED DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
Vcc	Power Supply Voltage	2.7		3.6	V
V_{IH}	High Level input Voltage	V _{CC} × 0.78		V _{CC} + 0.3	V
V_{IL}	Low Level Input Voltage	-0.3*	_	V _{CC} × 0.22	V

^{* -2} V (pulse width lower than 20 ns)

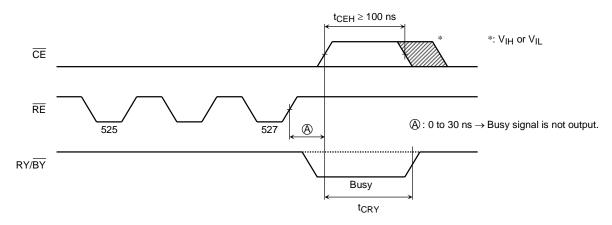
<u>DC CHARACTERISTICS</u> (Ta = 0° to 70° C, V_{CC} = 2.7 V to 3.6 V)

SYMBOL	PARAMETER	CONDITION	MIN	TYP.	MAX	UNIT
I _{IL}	Input Leakage Current	V _{IN} = 0 V to V _{CC}	_	_	±10	μА
I _{LO}	Output Leakage Current	V _{OUT} = 0 V to V _{CC}	_	_	±10	μΑ
ICCO1	Operating Current (Serial Read)	$\overline{\overline{CE}} = V_{IL}, I_{OUT} = 0 \text{ mA},$ $t_{cycle} = 50 \text{ ns}$	_	_	30	mA
I _{CCO3}	Operating Current (Command Input)	t _{cycle} = 50 ns	_	_	30	mA
I _{CCO4}	Operating Current (Data Input)	t _{cycle} = 50 ns	_	_	30	mA
I _{CCO5}	Operating Current (Address Input)	t _{cycle} = 50 ns	_	_	30	mA
I _{CCO7}	Programming Current	_	_	_	30	mA
I _{CCO8}	Erasing Current	_	_	_	30	mA
Iccs	Standby Current	$\overline{\text{CE}} = V_{\text{CC}} - 0.2 \text{ V}, \overline{\text{WP}} = 0 \text{ V/V}_{\text{CC}}$	_	_	50	μΑ
V _{OH}	High Level Output Voltage	$I_{OH} = -400 \mu A$	2.4	_	_	V
V_{OL}	Low Level Output Voltage	I _{OL} = 2.1 mA			0.4	V
I _{OL} (RY/BY)	Output Current of RY/BY pin	V _{OL} = 0.4 V	_	8	_	mA

⁽²⁾ The first block (block address #00) is guaranteed to be a valid block at the time of shipment.

AC CHARACTERISTICS AND RECOMMENDED OPERATING CONDITIONS

(Ta = 0° to 70° C, V_{CC} = 2.7 V to 3.6 V)


SYMBOL	PARAMETER	MIN	MAX	UNIT	NOTES
t _{CLS}	CLE Setup Time	0	_	ns	
t _{CLH}	CLE Hold Time	10	_	ns	
tcs	CE Setup Time	0	_	ns	
t _{CH}	CE Hold Time	10	_	ns	
twp	Write Pulse Width	25	_	ns	
t _{ALS}	ALE Setup Time	0	_	ns	
t _{ALH}	ALE Hold Time	10	_	ns	
t _{DS}	Data Setup Time	20	_	ns	
t _{DH}	Data Hold Time	10	_	ns	
t _{WC}	Write Cycle Time	50	_	ns	
t _{WH}	WE High Hold Time	15	_	ns	
t _{WW}	WP High to WE Low	100	_	ns	
t _{RR}	Ready to RE Falling Edge	20	_	ns	
t _{RP}	Read Pulse Width	35	_	ns	
t _{RC}	Read Cycle Time	50	_	ns	
t _{REA}	RE Access Time (Serial Data Access)	_	35	ns	
tCEA	CE Access Time (Serial Data Access)	_	45	ns	
tALEA	ALE Access Time (ID Read)	_	45	ns	
tCEH	CE High Time for Last Address in Serial Read Cycle	100	_	ns	(2)
tон	Data Output Hold Time	10	_	ns	
t _{RHZ}	RE High to Output High Impedance	_	30	ns	
t _{CHZ}	CE High to Output High Impedance	_	20	ns	
tREH	RE High Hold Time	15	_	ns	
t _{IR}	Output-High-impedance-to-RE Falling Edge	0	_	ns	
t _{RHW}	RE High to WE Low	0	_	ns	
twhc	WE High to CE Low	30	_	ns	
twhR	WE High to RE Low	30	_	ns	
t _R	Memory Cell Array to Starting Address	_	30	μS	
t _{WB}	WE High to Busy	_	200	ns	
t _{AR2}	ALE Low to RE Low (Read Cycle)	50	_	ns	
t _{RB}	RE Last Clock Rising Edge to Busy (in Sequential Read)	_	200	ns	
tCRY	CE High to Ready (When interrupted by CE in Read Mode)	_	1 + t _R (RY/BY)	μ\$	(1) (2)
t _{RST}	Device Reset Time (Ready/Read/Program/Erase)	_	6 / 7 / 12 / 500	μS	

AC TEST CONDITIONS

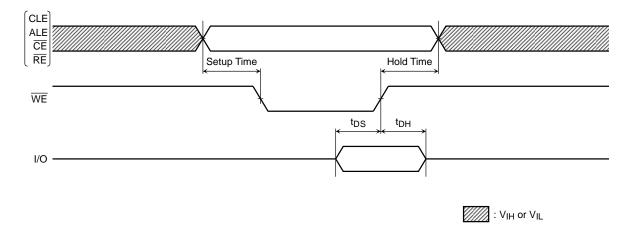
PARAMETER	CONDITION		
V _{CC}	2.7 V to 3.6 V		
Input level	V _{CC} – 0.2 V, 0.2 V		
Input pulse rise and fall time	3 ns		
Input comparison level	V _{CC} / 2		
Output data comparison level	V _{CC} /2		
Output load	C _L (100 pF) + 1 TTL		

Note:

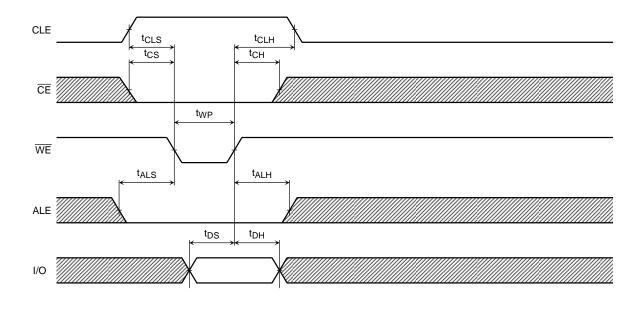
- (1) $\overline{\text{CE}}$ High to Ready time depends on the pull-up resister tied to the RY/ $\overline{\text{BY}}$ pin. (Refer to Application Note (9) toward the end of this document.)
- (2) Sequential Read is terminated when t_{CEH} is greater than or equal to 100 ns. If the \overline{RE} to \overline{CE} delay is less than 30 ns, RY/\overline{BY} signal stays Ready.

PROGRAMMING AND ERASING CHARACTERISTICS

(Ta = 0° to 70° C, V_{CC} = 2.7 V to 3.6 V)


SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT	NOTES
t _{PROG}	Programming Time	1	300	700	μs	
N	Number of Partial Programming Cycles in the Same Page	_	_	3	_	(1)
tBERASE	Block Erasing Time	_	3	10	ms	

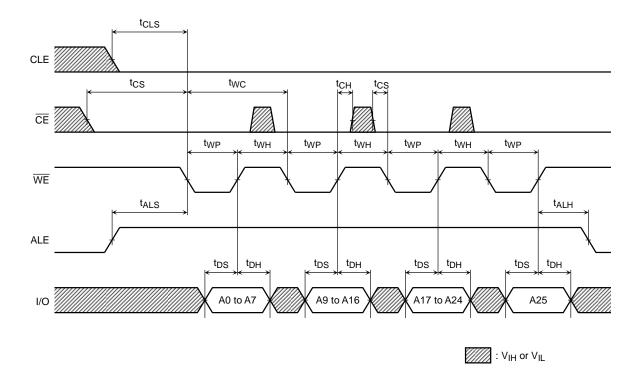
5


(1): Refer to Application Note (12) toward the end of this document.

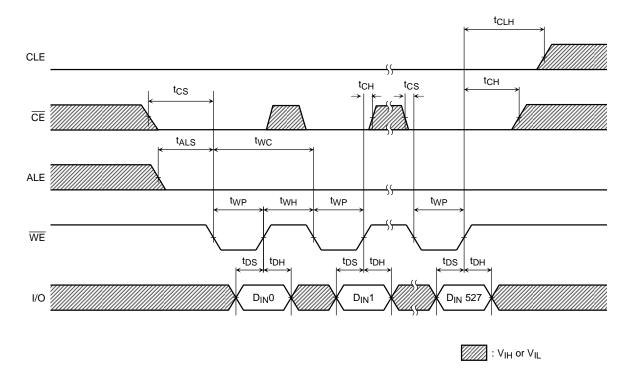
TIMING DIAGRAMS

Latch Timing Diagram for Command/Address/Data

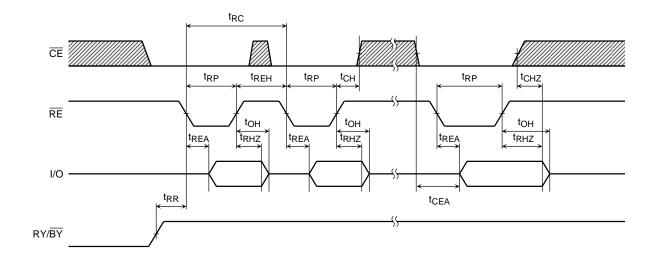
Command Input Cycle Timing Diagram

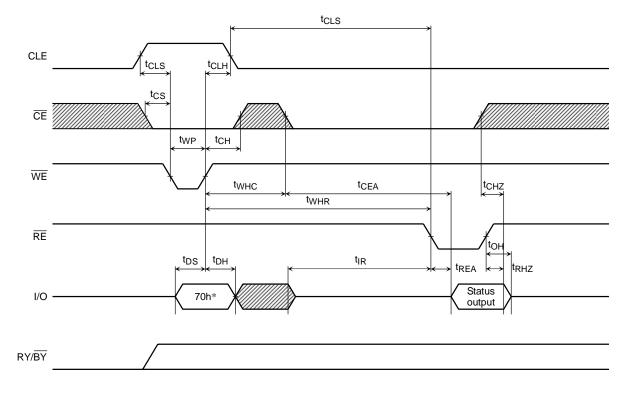


6


: V_{IH} or V_{IL}

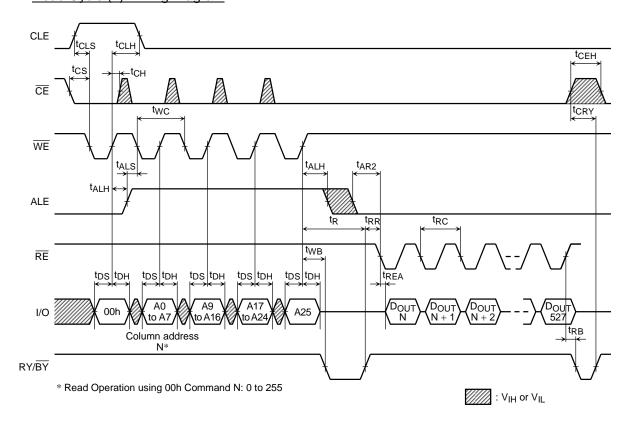
Address Input Cycle Timing Diagram


TOSHIBA

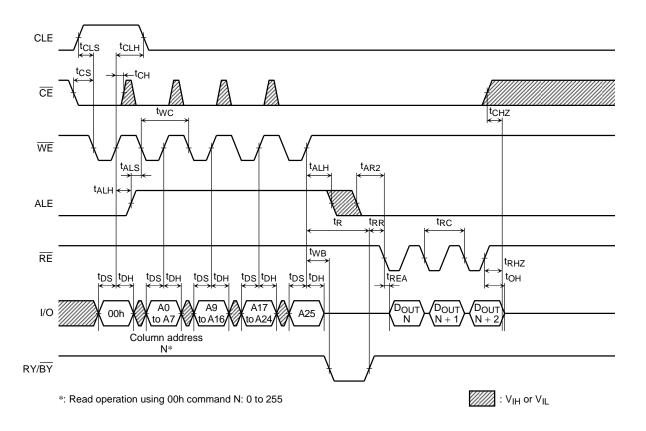

Data Input Cycle Timing Diagram

Serial Read Cycle Timing Diagram

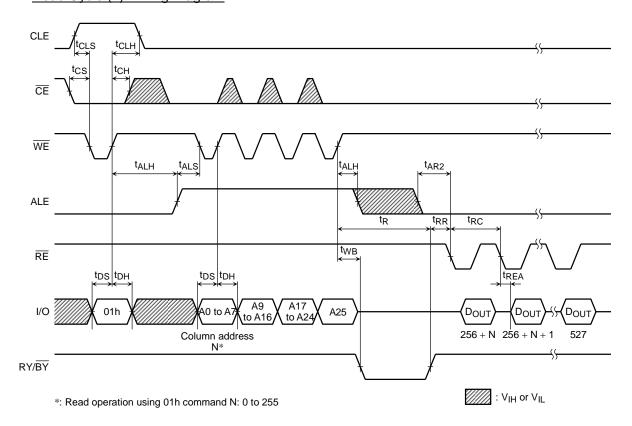
Status Read Cycle Timing Diagram

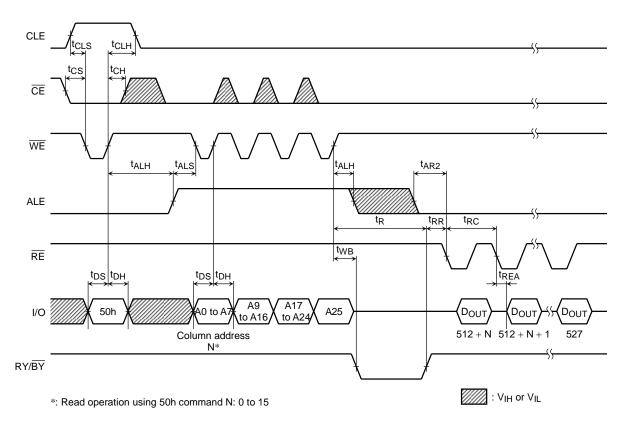


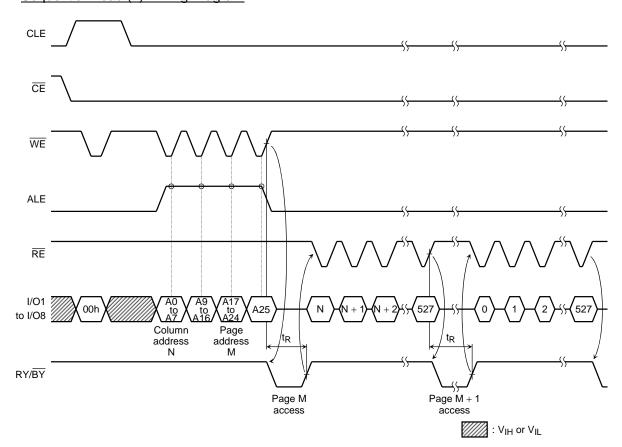
8

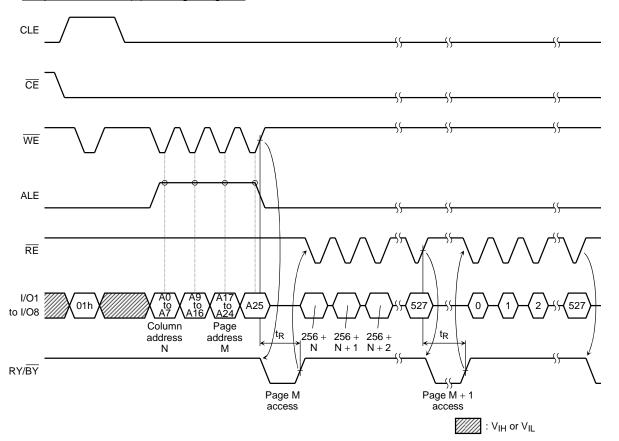

* 70h represents the hexadecimal number

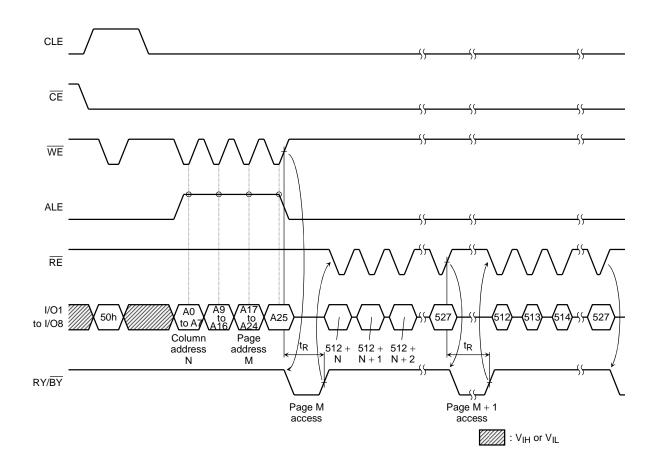
: V_{IH} or V_{IL}

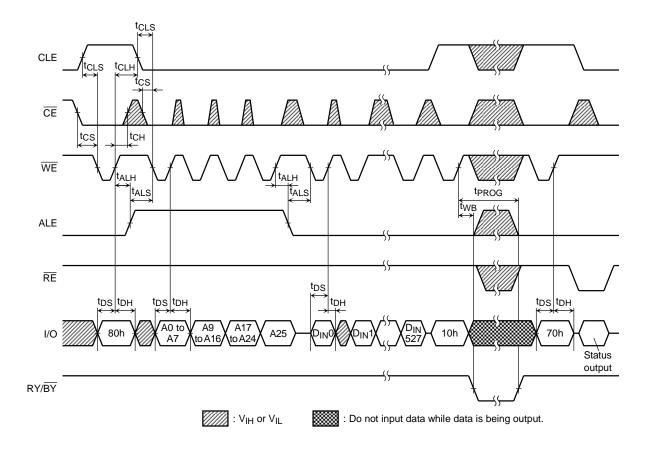

Read Cycle (1) Timing Diagram

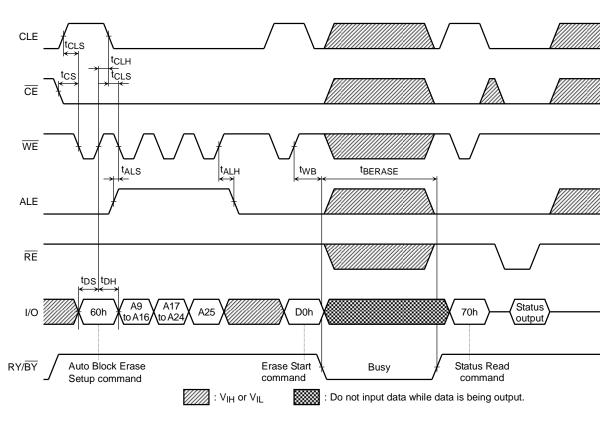

Read Cycle (1) Timing Diagram: When Interrupted by $\overline{\text{CE}}$

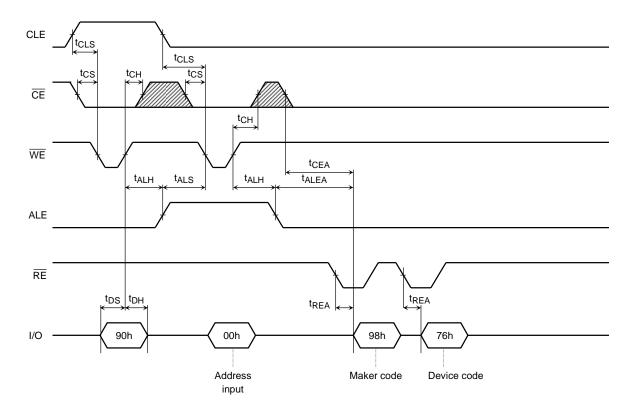

Read Cycle (2) Timing Diagram


Read Cycle (3) Timing Diagram


Sequential Read (1) Timing Diagram


Sequential Read (2) Timing Diagram


Sequential Read (3) Timing Diagram


Auto-Program Operation Timing Diagram

Auto Block Erase Timing Diagram

ID Read Operation Timing Diagram

: V_{IH} or V_{IL}

PIN FUNCTIONS

The device is a serial access memory which utilizes time-sharing input of address information.

Command Latch Enable: CLE

The CLE input signal is used to control loading of the operation mode command into the internal command register. The command is latched into the command register from the I/O port on the rising edge of the $\overline{\text{WE}}$ signal while CLE is High.

Address Latch Enable: ALE

The ALE signal is used to control loading of either address information or input data into the internal address/data register. Address information is latched on the rising edge of $\overline{\text{WE}}$ if ALE is High. Input data is latched if ALE is Low.

Chip Enable: CE

The device goes into a low-power Standby mode when \overline{CE} goes High during a wait state. The \overline{CE} signal is ignored when device is in Busy state (RY/ \overline{BY} = L), such as during a Program or Erase or Read operation, and will not enter Standby mode even if the \overline{CE} input goes High.

Write Enable: WE

The WE signal is used to control the acquisition of data from the I/O port.

Read Enable: RE

The \overline{RE} signal controls serial data output. Data is available treather the falling edge of \overline{RE} . The internal column address counter is also incremented (Address = Address + 1) on this falling edge.

I/O Port: I/O1 to 8

The I/O1 to 8 pins are used as a port for transferring address, command and input/output data to and from the device.

Write Protect: WP

The \overline{WP} signal is used to protect the device from accidental programming or erasing. The internal voltage regulator is reset when \overline{WP} is Low. This signal is usually used for protecting the data during the power-on/off sequence when input signals are invalid.

Ready/Busy: RY/ BY

The RY/\overline{BY} output signal is used to indicate the operating condition of the device. The RY/\overline{BY} signal is in Busy state ($RY/\overline{BY}=L$) during the Program, Erase and Read operations and will return to Ready state ($RY/\overline{BY}=H$) after completion of the operation. The output buffer for this signal is an open drain and has to be pulled-up to Vcc with an appropriate resister.

Schematic Cell Layout and Address Assignment

The Program operation works on page units while the Erase operation works on block units.

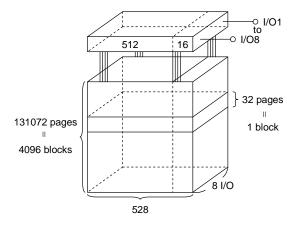


Figure 1. Schematic Cell Layout

A page consists of 528 bytes in which 512 bytes are used for main memory storage and 16 bytes are for redundancy or for other uses.

1 page = 528 bytes 1 block = 528 bytes × 32 pages = (16K + 512) bytes Capacity = 528 bytes × 32 pages × 4096 blocks

An address is read in via the I/O port over four consecutive clock cycles, as shown in Table 1.

Table 1. Addressing

	I/O8	1/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
First cycle	A7	A6	A5	A4	А3	A2	A1	A0
Second cycle	A16	A15	A14	A13	A12	A11	A10	A9
Third cycle	A24	A23	A22	A21	A20	A19	A18	A17
Fourth cycle	*L	A25						

A0 to A7: Column address A9 to A25: Page address A14 to A25: Block address A9 to A13: NAND address in block

^{*:} A8 is automatically set to Low or High by a 00h command or a 01h command. I/O2 to 8 must be set to Low in the fourth cycle.

Operation Mode: Logic and Command Tables

The operation modes such as Program, Erase, Read and Reset are controlled by the ten different command operations shown in Table 4. Address input, command input and data input/output are controlled by the CLE, ALE, $\overline{\text{CE}}$, $\overline{\text{WE}}$, $\overline{\text{RE}}$ and $\overline{\text{WP}}$ signals, as shown in Table 2.

Table 2. Logic table

	CLE	ALE	CE	WE	RE	WP *1
Command Input	Н	L	L	F	Н	*
Address Input	L	Н	L	F	Н	*
Data Input	L	L	L	F	Н	Н
Serial Data Output	L	L	L	Н	7	*
During Programming (Busy)*2	*	*	*	*	*	Н
During Erasing (Busy)* ²	*	*	*	*	*	Н
Program, Erase Inhibit	*	*	*	*	*	L
Standby	*	*	Н	*	*	0 V/V _{CC}

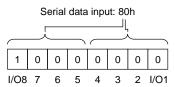
H: V_{IH}, L: V_{IL}, *: V_{IH} or V_{IL}

Table 3 shows the operation states for Read mode.

Table 3. Read mode operation states

	CLE	ALE	CE	WE	RE	I/O1 to I/O8	Power
Output Select	L	L	L	Н	L	Data output	Active
Output Deselect	L	L	L	Н	Н	High impedance	Active

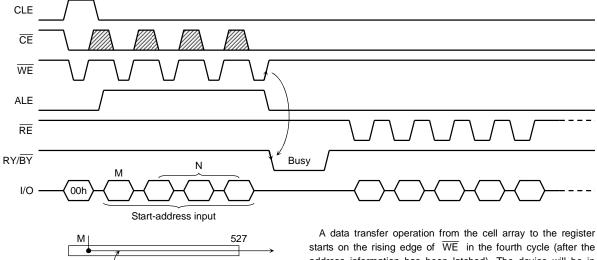
H: V_{IH}, L: V_{IL}


^{*1:} Refer to Application Note (10) toward the end of this document regarding the WP signal when Program or Erase Inhibit

^{*2:} The \overline{CE} signal is ignored when device is in Busy state ($\overline{RY/BY}$ = L), such as during a Program or Erase or Read operation, and will not enter Standby mode even if the \overline{CE} input goes High.

Table 4. Command table (HEX)

	First Cycle	Second Cycle	Acceptable while Busy
Serial Data Input	80	_	
Read Mode (1)	00	_	
Read Mode (2)	01	_	
Read Mode (3)	50	_	
Reset	FF	_	0
Auto Program	10	_	
Auto Block Erase	60	D0	
Status Read	70	_	0
ID Read	90	_	

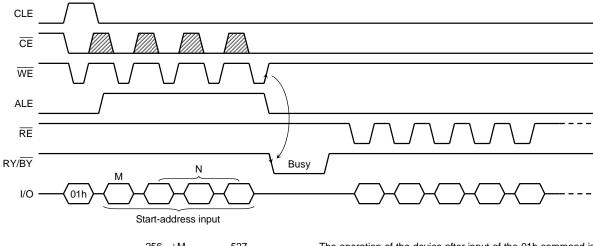

HEX data bit assignment (Example)

DEVICE OPERATION

Read Mode (1)

Read mode (1) is set when a 00h command is issued to the Command register. Refer to Figure 2 below for timing details and the block diagram.

Cell array


Figure 2. Read mode (1) operation

address information has been latched). The device will be in Busy state during this transfer period.

After the transfer period the device returns to Ready state. Serial data can be output synchronously with the RE clock from the start pointer designated in the address input cycle.

Read Mode (2)

Select page

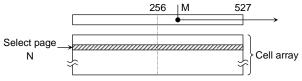
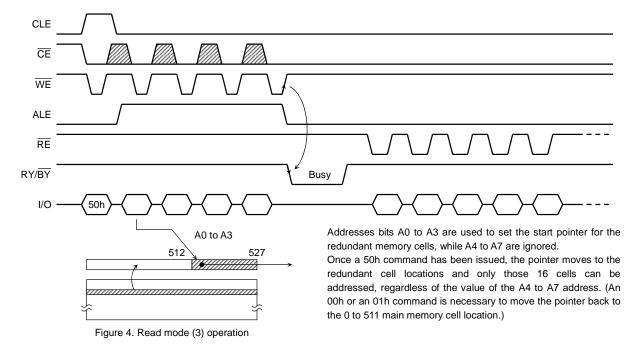
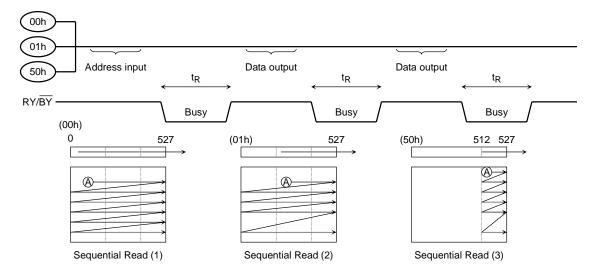



Figure 3. Read mode (2) operation

The operation of the device after input of the 01h command is the same as that of Read mode (1). If the start pointer is to be set after column address 256, use Read mode (2).


Read Mode (3)

Read mode (3) has the same timing as Read modes (1) and (2) but is used to access information in the extra 16-byte redundancy area of the page. The start pointer is therefore set to a value between byte 512 and byte 527.

Sequential Read (1) (2) (3)

This mode allows the sequential reading of pages without additional address input.

Sequential Read modes (1) and (2) output the contents of addresses 0 to 527 as shown above, while Sequential Read mode (3) outputs the contents of the redundant address locations only.

Status Read

The device automatically implements the execution and verification of the Program and Erase operations. The Status Read function is used to monitor the Ready/Busy status of the device, determine the result (pass/fail) of a Program or Erase operation, and determine whether the device is in Protect mode. The device status is output via the I/O port on the $\overline{\rm RE}$ clock after a Status Read command "70h" input. The resulting information is outlined in Table 5.

Table 5. Status output table for Status Read command "70h"

	STATUS	С	DUTPUT	
I/O1	Pass/Fail	Pass: 0	Fail: 1	1
I/O2	Not Used	0		1
I/O3	Not Used	0		The Pass
I/O4	Not Used	0		valid when t
I/O5	Not Used	0		state.
I/O6	Not Used	0		1
I/O7	Ready/Busy	Ready: 1	Busy: 0	
I/O8	Write Protect	Protect: 0	Not Protected: 1	

The Pass/Fail status on I/O1 is only valid when the device is in the Ready state.

An application example with multiple devices is shown in Figure 5.

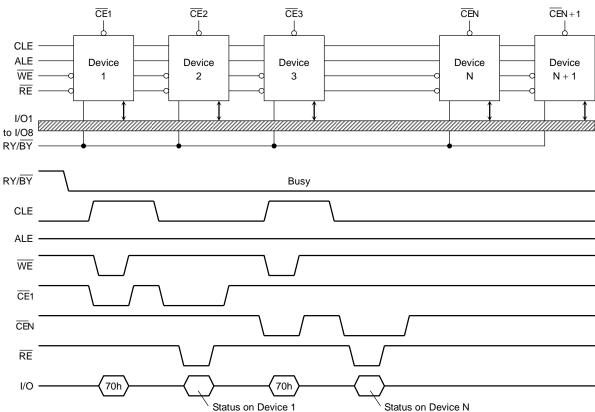
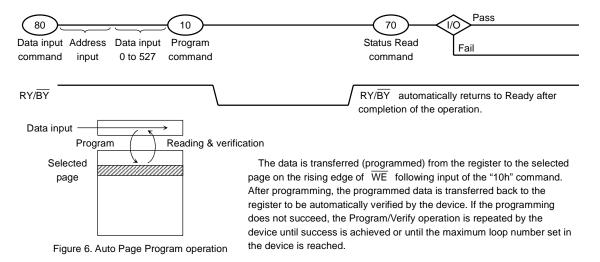
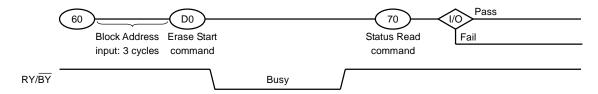



Figure 5. Status Read timing application example

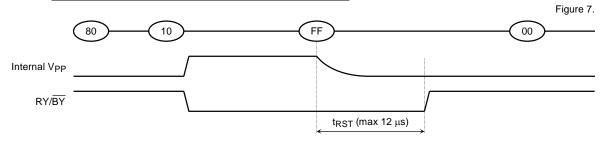
System Design Note: If the RY/\overline{BY} pin signals from multiple devices are wired together as shown in the diagram, the Status Read function can be used to determine the status of each individual device.


Auto Page Program

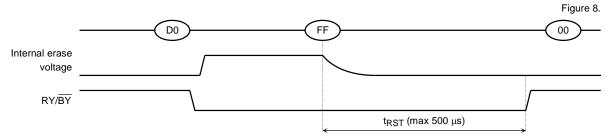
The device carries out an Automatic Page Program operation when it receives a "10h" Program command after the address and data have been input. The sequence of command, address and data input is shown below. (Refer to the detailed timing chart.)

Auto Block Erase

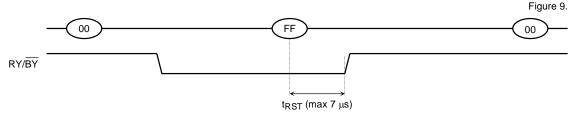
The Auto Block Erase operation starts on the rising edge of $\overline{\text{WE}}$ after the Erase Start command "D0h" which follows the Erase Setup command "60h". This two-cycle process for Erase operations acts as an ertra layer of protection from accidental erasure of data due to external noise. The device automatically executes the Erase and Verify operations.



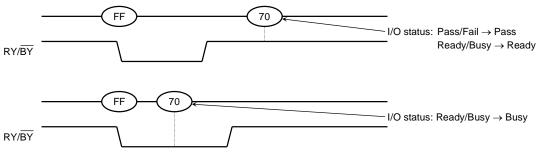
Reset


The Reset mode stops all operations. For example, in the case of a Program or Erase operation the internally generated voltage is discharged to 0 volts and the device enters Wait state.

The response to an "FFh" Reset command input during the various device operations is as follows:


When a Reset (FFh) command is input during programming

When a Reset (FFh) command is input during erasing



When a Reset (FFh) command is input during Read operation

When a Status Read command (70h) is input after a Reset

Figure 10.

When two or more Reset commands are input in succession

RY/BY

(1)

(2)

(3)

FF

FF

The second FF command is invalid, but the third FF command is valid.

ID Read

 ${
m ID}$ Read command 90h provides maker code and device code. The ${
m ID}$ codes can be read out under the following timing conditions:

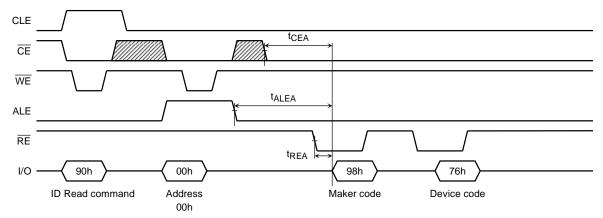


Figure 12. ID Read timing

Table 6. ID Codes read out by ID read command 90h

	I/O8	1/07	I/O6	I/O5	1/04	I/O3	I/O2	I/O1	Hex Data
Maker code	1	0	0	1	1	0	0	0	98h
Device code	0	1	1	1	0	1	1	0	76h

<u>APPLICATION NOTES AND COMMENTS</u>

(1) Power-on/off sequence:

The \overline{WP} signal is useful for protecting against data corruption at power-on/off. The following timing sequence is necessary.

The \overline{WP} signal may be negated any time after the V_{CC} reaches 2.5 V and \overline{CE} signal is kept high in power up sequence.

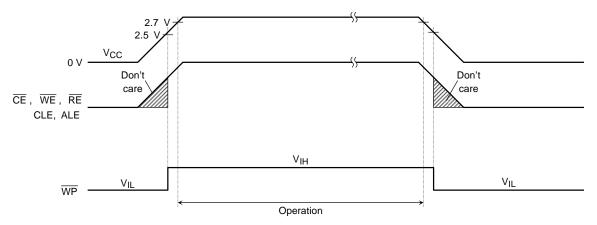


Figure 13. Power-on/off Sequence

In order to operate this device stably, after VCC becomes 2.5V, it should begin access after about 1 ms.

(2) Status after power-on

The following sequence is necessary because some input signals may not be stable at power-on.

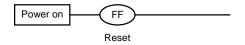


Figure 14.

(3) Prohibition of unspecified commands

The operation commands are listed in Table 4. Input of a command other than those specified in Table 4 is prohibited. Stored data may be corrupted if an unknown command is entered during the command cycle.


(4) Restriction of command while Busy state

During Busy state, do not input any command except 70h and FFh.

(5) Acceptable commands after Serial Input command "80h"

Once the Serial Input command "80h" has been input, do not input any command other than the Program Execution command "10h" or the Reset command "FFh".

If a command other than "10h" or "FFh" is input, the Program operation is not performed.

(6) Addressing for program operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) page of the block. Random page address programming is prohibited.

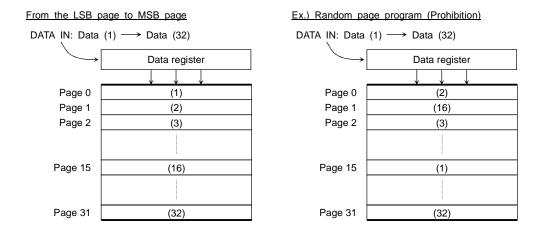


Figure 15. page programming within a block

(7) Status Read during a Read operation

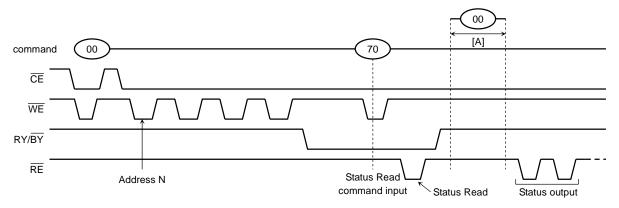


Figure 16.

The device status can be read out by inputting the Status Read command "70h" in Read mode.

Once the device has been set to Status Read mode by a "70h" command, the device will not return to Read mode.

Therefore, a Status Read during a Read operation is prohibited.

However, when the Read command "00h" is inputted during [A], Status mode is reset and the device returns to Read mode. In this case, data output starts automatically from address N and address input is unnecessary.

(8) Pointer control for "00h", "01h" and "50h"

The device has three Read modes which set the destination of the pointer. Table 7 shows the destination of the pointer, and Figure 17 is a block diagram of their operations.

Table 7. Pointer Destination

Read Mode	Command	Pointer
(1)	00h	0 to 255
(2)	01h	256 to 511
(3)	50h	512 to 527

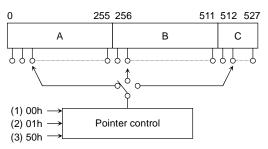
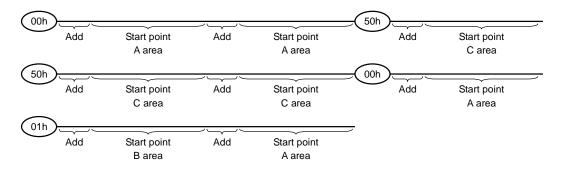



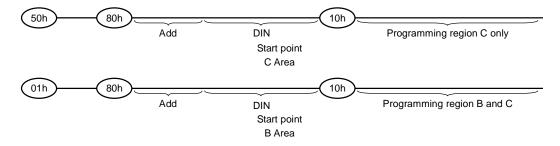
Figure 17 Pointer control

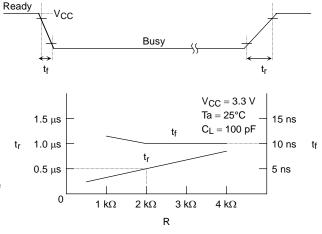
The pointer is set to region A by the "00h" command, to region B by the "01h" command, and to region C by the "50h" command.

(Example)

The "00h" command must be input to set the pointer back to region A when the pointer is pointing to region C.

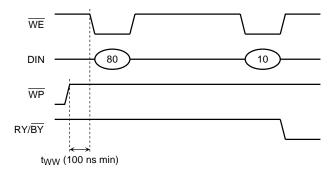
To program region C only, set the start point to region C using the 50h command.

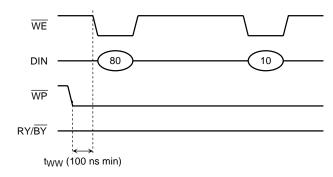



Figure 18. Example of How to Set the Pointer

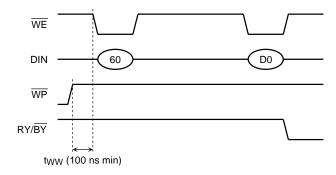
(9) RY/\overline{BY} : termination for the Ready/Busy pin (RY/\overline{BY})

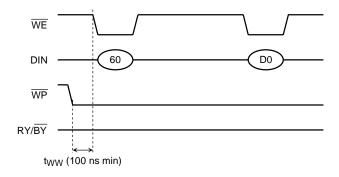
A pull-up resistor needs to be used for termination because the RY/\overline{BY} buffer consists of an open drain circuit.


This data may vary from device to device. We recommend that you use this data as a reference when selecting a resistor value.

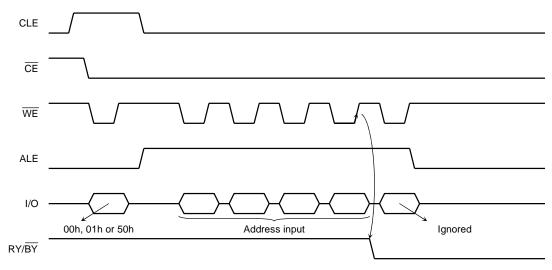

(10) Note regarding the $\overline{\text{WP}}$ signal

The Erase and Program operations are automatically reset when \overline{WP} goes Low. The operations are enabled and disabled as follows:


Enable Programming


Disable Programming

Enable Erasing


Disable Erasing

(11) When five address cycles are input

Although the device may read in a fifth address, it is ignored inside the chip.

Read operation

Internal read operation starts when $\ \overline{\text{WE}}\$ goes High in the fourth cycle.

Figure 20.

Program operation

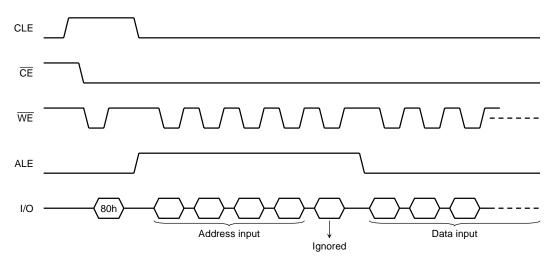


Figure 21.

(12) Several programming cycles on the same page (Partial Page Program)

A page can be divided into up to 3 segments. Each segment can be programmed individually as follows:

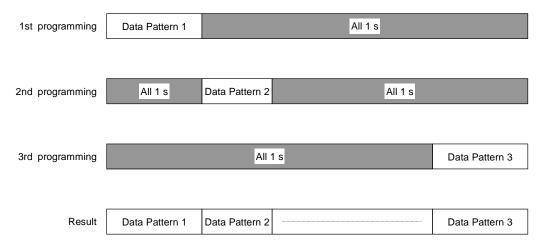



Figure 22

Note: The input data for unprogrammed or previously programmed page segments must be "1"

(13) Note regarding the \overline{RE} signal

 \overline{RE} The internal column address counter is incremented synchronously with the \overline{RE} clock in Read mode. Therefore, once the device has been set to Read mode by a "00h", "01h" or "50h" command, the internal column address counter is incremented by the \overline{RE} clock independently of the address input timing, If the \overline{RE} clock input pulses start before the address input, and the pointer reaches the last column address, an internal read operation (array to register) will occur and the device will enter Busy state. (Refer to Figure 23.)

31

Hence the RE clock input must start after the address input.

(14) Invalid blocks (bad blocks)

The device contains unusable blocks. Therefore, at the time of use, please check whether a block is bad and do not use these bad blocks.

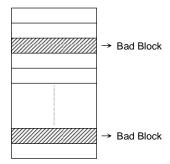
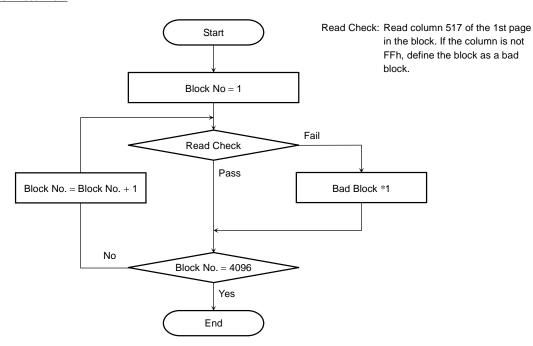


Figure 24

At the time of shipment, all data bytes in a Valid Block are FFh. For Bad Block, all bytes are not in the FFh state. Please don't perform erase operation to Bad Block.


Check if the device has any bad blocks after installation into the system. Figure 25 shows the test flow for bad block detection. Bad blocks which are detected by the test flow must be managed as unusable blocks by the system.

A bad block does not affect the performance of good blocks because it is isolated from the Bit line by the Select gate

The number of valid blocks over the device lifetime is as follows:

	MIN	TYP.	MAX	UNIT
Valid (Good) Block Number	4016	_	4096	Block

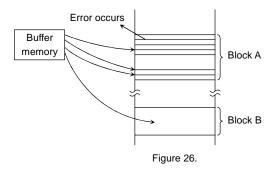
Bad Block Test Flow

*1: No erase operation is allowed to detected bad blocks

Figure 25

(15) Failure phenomena for Program and Erase operations

The device may fail during a Program or Erase operation.

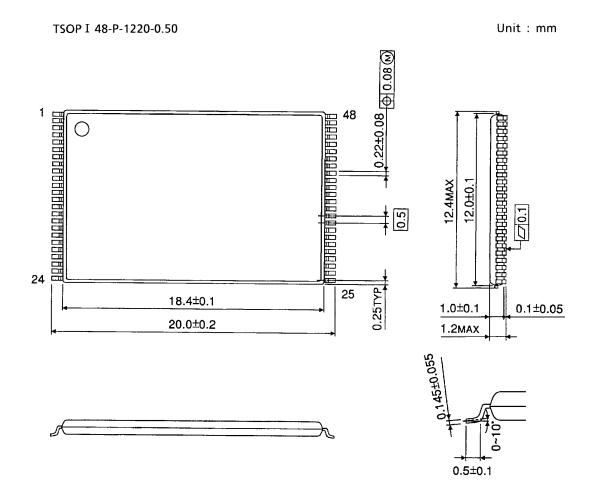

The following possible failure modes should be considered when implementing a highly reliable system.

FAILURE MODE		DETECTION AND COUNTERMEASURE SEQUENCE
Block	Erase Failure	Status Read after Erase → Block Replacement
Page	Programming Failure	Status Read after Program → Block Replacement
Single Bit	Programming Failure 1 → 0	ECC

• ECC: Error Correction Code

• Block Replacement

Program


When an error happens in Block A, try to reprogram the data into another Block (Block B) by loading from an external buffer. Then, prevent further system accesses to Block A (by creating a bad block table or by using an another appropriate scheme).

Erase

When an error occurs in an Erase operation, prevent future accesses to this bad block (again by creating a table within the system or by using another appropriate scheme).

(16) Do not turn off the power before write/erase operation is complete. Avoid using the device when the battery is low. Power shortage and/or power failure before write/erase operation is complete will cause loss of data and/or damage to data.

Package Dimensions

Weight: 0.53 g (typ.)

Revision History

Date	Rev.	Description
2008-07-25	1.00	Original version
2008-10-10	1.10	Changed the description of ICCS

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
 The information
 contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
 TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No
 license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances.
 - Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.
- The products described in this document are subject to foreign exchange and foreign trade control laws.