
7675A–AVR–03/07

8-bit

Microcontrollers

Application Note
AVR276: USB Software Library for AT90USBxxx
Microcontrollers

Features
• Low Speed (1.5Mbit/s) and Full Speed (12Mbit/s) data rates

• Control, Bulk, Isochronuous and Interrupt transfer types

• Up to 6 data endpoints/pipes

• Single or double buffering

• Device mode:

– Standard or custom USB device classes with AVR USB software library

• Reduced host mode:

– Host pipes auto configuration with device descriptors

– Supports for composite devices (multiple interfaces)

1. Description
This document describes the AT90USBxxx USB software library and illustrate how to

develop USB device or reduced host applications using this library.

This document is written for the software developers to help in the development of

their applications (both device or reduced host mode) for the AT90USBxxx. It

assumes that readers are familiar with the AT90USBxxx architecture. A minimum

knowledge of chapter 9 of USB specification 2.0 (www.usb.org) is also required to

understand the content of this document.

1.1 Overview

The AT90USBxxx software library is designed to hide the complexity of USB develop-

ment (and especially enumeration stage) from sofware designers.

The aim of this document is to describe the USB firmware and give an overview of the

architecture. The main files are described in order to give the user the easiest way to

customize the firmware and build his own application.

The AT90USBxx software library also provides a dual role (device or reduced host)

application example (template demonstration sofware) to illustrate the usage of this

library.

1.2 Limitations
• Full support for OTG (On the Go) compliance (SRP/HNP requests management) not yet integrated

1.3 Terminology

VID: USB Vendor Identifier

PID: USB Product Identifier
 2

7675A–AVR–03/07

AVR276

 AVR276
2. Coding Style
The coding style explained hereunder are important to understand the firmware:

• Defined contants use caps letters.

#define FOSC 8000

• Macros Functions use the first letter as cap

#define Is_usb_sof() ((UDINT & MSK_SOFI) ? TRUE: FALSE)

• The user application can execute its own specific instructions upon each USB events thanks

to hooks defined as following in usb_conf.h.

#define Usb_sof_action() sof_action();

Note: The hook function should perform only short time requirement

operations !

• Usb_unicode() macro function should be used everywhere (String descriptors...) an unicode

char is exchanged on the USB protocol.
 3

7675A–AVR–03/07

3. USB Bus

3.1 Bus topology
The USB specification defines two different types of nodes on the USB bus: host or device

Figure 3-1. USB standard topology

• USB Host:

– There is only one host in any USB system, and it operates as the “master” of the

USB bus.

– The USB interface to the host system is referred to as the Host Controller.

• USB Device:

– A USB device operates a slave node on the USB bus.

– Thanks to the USB hub (that also operates as USB device), up to 127 devices can

be connected on the USB bus. Each device is uniquely identified by a device

address.

AT90USBxxx parts can operate both as USB device or USB host, accurately in host mode

AT90USBxxx operates as reduced host controller. A reduced host controller has a unique USB

port and does not handle full USB tree with hub. It means that a reduced host controller is

designed to handle a unique point to point connection with a unique USB device. A reduced host

application supports a known targeted device list (VID/PID list). Only the devices listed within

this list are supported by the application. In addition the AT90USBxxx USB software library is

able to support a targeted list of CLASS/SUBCLASS/PROTOCOL.

Figure 3-2. Reduced host topology

USB

HOST

hub

hub

hub

hub

hub

Device

Device

Device

DeviceDevice Device

Device

Device

USB
Reduced

HOST

Dev ice
 4

7675A–AVR–03/07

AVR276

 AVR276
The AT90USBxxx software library can be configured to manage one of the following USB oper-

ating modes:

• USB device

• USB reduced host

• USB dual role device

– This mode allows to support both previously defined modes. The operating mode is

defined thanks to the external USB ID pin. Tied to ground (connected to a MiniA

plug) the ID pin allows the AT90USBxxx to enter USB reduced host mode. If the ID

pin is not connected (connected to a mini B plug) the AT90USBxxx operates in

device mode.

3.2 USB Descriptors

During the enumeration process, the host asks the device several descriptor values to identify it

and load the correct drivers. Each USB device should have at least the descriptors shown in the

figure below to be recognized by the host:

Figure 3-3. USB Descriptors

The most difficult part of any USB application is determining what the device descriptors should

be. Every USB device communicates its requirements to the host through a process called enu-

Device Descriptor

Configuration

Descriptor

Configuration

Descriptor

Configuration

Descriptor

String Descriptor

Configuration

Descriptor

Configuration

Descriptor

Interface Descriptor

Endpoint Descriptor

String Descriptor
String Descriptor

Endpoint Descriptor
Endpoint Descriptor

Endpoint Descriptor
Endpoint Descriptor

Class Specific
Descriptor
 5

7675A–AVR–03/07

meration. The AT90USBxxx software library provides full enumeration process for both device

or reduced host mode.

During enumeration, the device descriptors are transferred to the host which assigns a unique

address to the device. The descriptors are described in detail in Chapter 9 of the USB 2.0

specification.

3.2.1 Device Descriptor

The USB device can have only one device descriptor. This descriptor displays the entire device.

It gives information about the USB version, the maximum packet size of the endpoint 0, the ven-

dor ID, the product ID, the product version, the number of the possible configurations the device

can have, etc.

The table hereunder shows the format of this descriptor

Table 3-1. Device descriptor

Field Description

bLength Descriptor size

bDescriptorType Device descriptor

bcdUSB USB version

bDeviceClass
Code class (If 0, the class will be specified by each interface, if 0xFF, it is

specified by the vendor)

bDeviceSubClass Sub class code (assigned by USB org)

bDeviceProtocol Code protocol (assigned by USB org)

bMaxPacketSize
The maximal packet size in bytes of the endpoint 0. It has to be 8 (Low

Speed), 16, 32 or 64 (Full Speep)

idVendor Vendor identification (assigned by USB org)

idProduct Product identification (assigned by the manufacturer)

bcdDevice Device version (assigned by the manufacturer)

iManufacturer Index into a string array of the manufacturer descriptor

iProduct Index into a string array of the product descriptor

iSerialNumber Index into a string array of the serial number descriptor

bNumConfiguration Number of configurations
 6

7675A–AVR–03/07

AVR276

 AVR276
3.2.2 Configuration Descriptor

The USB device can have more than one configuration descriptor, however the majority of

devices use a single configuration. This descriptor specifies the power-supply mode

(self_powered or bus-powered), the maximum power that can be consumed by the device, the

interfaces belonging to the device, the total size of all the data descriptors , etc.

For example one device can have two configurations, one when it is powered by the bus and the

other when it is self-powered. We can imagine also configurations which use different transfer

modes.

The table hereunder shows the format of this descriptor:

3.2.3 Interface Descriptor

A single device can have more than one interface. The main information given by this descriptor

is the number of endpoints used by this interface and the USB class and subclass.

The table hereunder shows the format of this descriptor:

Table 3-2. Configuration descriptor

Field Description

bLength Descriptor size

bDescriptor Configuration descriptor

wTotalLength Total descriptors size

bNuminterface Number of interfaces

bConfigurationValue Number of the configuration

bmAttributes self-powered or bus-powered, remote wake up

bMaxpower 2mA by unit

Table 3-3. Interface descriptor

Field Description

bLength Descriptor size

bDescriptorType Interface descriptor

bInterfaceNumber interface number

bAltenativeSetting Used to select the replacing interface

bNumEndpoint Number of endpoints (excluding endpoint 0)

bInterfaceClass Class code (assigned by USB org)

bInterfaceSubClass

Subclass code (assigned by USB org)

0 No subclass

1 Boot interface subclass

iInterface Index into a string array to describe the used interface
 7

7675A–AVR–03/07

3.2.4 Endpoint Descriptor

This descriptor is used to describe the endpoint parameters such as: the direction (IN or OUT),

the transfer type supported (Interrupt, Bulk, Isochronuous), the size of the endpoint, the interval

of data transfer in case of interrupt transfer mode, etc.

The table hereunder shows the format of this descriptor:

Table 3-4. Endpoint descriptor

Field Description

bLength Descriptor size

bDescriptorType Endpoint descriptor

bEndpointAdress

Endpoint adress

Bits[0..3] Number of the endpoint

Bits[4..6] reserved, set to 0

Bit 7: Direction: 0 = OUT, 1 = IN

bmAttributes

Bits[0..1] Transfer type:

00=Control,

01=Isochronous,

10=Bulk,

11=Interrupt

Bits [2..7] reserved, except for Isochronous transfer

Only control and interrupt modes are allowed in Low Speed

wMaxPacketSize The maximum data size that this endpoint support

bInterval

It is the time interval to request the data transfer of the endpoint. The value is

given in number of frames (ms).

Ignored by the bulk and control transfers.

Set a value between 1and 16 (ms) for isochronous

Set a value between 1 and 255 (ms) for the interrupt transfer in Full Speed

Set a value between 10 and 255 (ms) for the interrupt transfer in Low Speed
 8

7675A–AVR–03/07

AVR276

 AVR276
4. Firmware Architecture
As shown in Figure 4-1, the architecture of the USB firmware is designed to avoid any hardware

interfacing (drivers layer should not be modified by the user). The USB software library can man-

age both device or host USB chapter 9 enumeration process.

The global USB firmware architecture is illustrated thanks to a dual role sample application “tem-

plate” that allows the AT90USBxxx to operate as a device or a host depending on the USB ID

pin.

The sample dual role application is based on three different tasks:

• The usb_task (usb_task.c), is the task performing the USB low level enumeration process in

device or host mode. Once this task has detected that the USB connection is fully

operationnal, it updates different status flags that can be checked within the high level

application tasks.

• The device template task (device_template_task.c) performs the high level device application

operation. This task contains the USB device user application that can be executed once the

device is enumerated.

• The host template task (host_template_task.c) performs the high level host application

operation once the connected device is enumerated.

Figure 4-1. AT90USBxxx USB Firmware Architecture for dual role application

AT90USBxxx Low Level USB drivers (hardware registers)

USB high level host application

USB high level device

applicationUSB Chapter9 management

main.c

scheduler.c

usb_task.c device_template_task.c host_template_task.c

Usb_drv.c
Usb_drv.h

Conf_usb.h

Conf_scheduler.h
Config.h

Device_template_task.h host_template_task.h

Config.hConfig.h

Host Operating mode

Usb_host_task.c

Usb_host_enum.c
Usb_host_enum.h

Usb_host_task.h

Device Operating mode

Usb_device_task.c

Usb_standard_request.c

Usb_specific_request.c

Usb_descriptors.c
Usb_descriptors.h

Usb_specific_request.h

Usb_standard_request.h

Usb_device_task.h

usb_task.h

USB Software library
 9

7675A–AVR–03/07

4.1 About the sample application

The sample application used to illustrate the USB software library can operate in both USB oper-

rating modes (device or host).

The device operating mode presents two interfaces:

• The first bullk IN/OUT interface operates in loop back data transfer (all data received on the

OUT endpoint are sent back with the IN endpoint).

• The second interface transmits data with an interrupt IN endpoint.

The host operating mode of the sample application recognizes, enumerates and uses the both

interfaces of the device application.

Figure 4-2. Sample application overview

Note: The B device descriptors used for this sample application are not directly usable for enu-

meration with a standard Pc host system. Please refer to Atmel website for “real” device

applications examples (HID mouse, HID keyboard, MassStorage, CDC ...).

Application in reduced host

operating mode (A device)

Application in device operating

mode (B device)

Enumeration of the

‘B device’

Enumeration

process

‘Loop back’

High level host

application (first

interface)

‘Loop back’

 High level device

application (first

interface)

OUT

endpoint

IN

endpoint

OUT pipe

IN pipe

Control

pipe

Control

endpoint

Interrupt

IN pipe

Interrupt

IN EP

Interrupt IN interface

(second interface)

Interrupt IN interface

(second interface)
 10

7675A–AVR–03/07

AVR276

 AVR276
4.2 Source files architecture

Figure 4-3. Source files organisation

Summary description

AT90USB128

lib_mcu

usb

usb_drv.c

usb_drv.h

demo

template

conf

config.h Global Configuration file for application

conf_usb.h Configuration file for USB software library

conf_scheduler.h Scheduler configuration (tasks declaration)

main.c Main entry point (scheduler initialisation)

usb_specific_request.c

usb_specific_request.h

device_template_task.c

device_template_task.h

host_template_task.c

host_template_task.h

usb_descriptors.c

usb_descriptors.h

modules

usb

device_chap9

usb_device_task.c

usb_device_task.h

usb_standard_request.c

usb_standard_request.h

host_chap9

usb_host_task.c

usb_host_task.c

usb_host_enum.c

usb_host_enum.h

usb_task.c

usb_task.h

lib_board

stk_525

stk_525.c

stk_525.h

usb_key

usb_key.c

usb_key.h

USB Interface Low Level drivers (registers

abstraction layer)

User or class specific device enumeration

requests (none standard enumeration

requests)

High level user application for USB device

mode (sample device application)

High level user application for USB host mode

(sample host application)

Device descriptors structures (used for device

enumeration process)

Entry point for USB task management

Device enumeration process (standard

requests)

USB device chapter 9 management

(connection, disconnection, suspend, resume

and call for enumeration process)

USB host chapter 9 management (device

connection, disconnection, suspend, resume

and high level enumeration process)

Low level enumeration functions (check

VID/PID, configure the host pipe according

device descriptors)
 11

7675A–AVR–03/07

5. Configuring the USB software library
The sample application is pre-configured to implement both host and device functionalities. It

can also be configured to be used in device or reduced host mode only. Depending on the USB

operating mode selected, the USB task will call either the usb_host_task, or the USB device task

to manage chapter 9 requests. In such case, the corresponding template_device_task or

template_host_task can be removed from the scheduled tasks.

5.1 Global configuration

All common configuration parameters for the application are defined in the “config.h” file (XTAL

frequency, CPU type...). Module specific parameters are defined in their respective configuration

files.

5.2 Scheduler configuration

The sample application provides a simple tasks scheduler that allows the user to create and add

applicative tasks without modifying the global application architecture and organisation. This

scheduler calls all predefined tasks in a predefined order without any preemption. A task is exe-

cuted until it is finished, then the scheduler calls the next task.

The scheduler tasks are defined in the “conf_scheduler.h” file, where the user can declare his

tasks.

For the sample USB dual role application the following scheduler configuration parameters are

used:

#define Scheduler_task_1_init usb_task_init

#define Scheduler_task_1 usb_task

#define Scheduler_task_2_init device_template_task_init

#define Scheduler_task_2 device_template_task

#define Scheduler_task_4_init host_template_task_init

#define Scheduler_task_4 host_template_task

The scheduler_task_X_init functions are executed only once upon scheduler startup whereas

the Scheduler_task_X functions are executed in a infinite loop.

5.3 USB library configuration

The USB library can be configured thanks to the “conf_usb.h” file. This file contains both USB

modes configuration parameters for device and host. The configuration file is split into three sec-

tions for global, device and host configuration parameters.

The global configuration section allows to select if the library uses the device and/or host USB

mode and if the internal USB pads regulator should be enable for the application (depending on

the application power supply range).
 12

7675A–AVR–03/07

AVR276

 AVR276
5.4 Device configuration

The USB library manages USB chapter 9 for a B device:

• Connection/Disconnection (VBUS monitoring)

• Suspend

• Resume

• Enumeration requests

Asynchronous USB events (connection, suspend, resume, reset) are managed directly within

the USB interrupt subroutine located in the “usb_tak.c” file. The user application can execute

specific functions upon these events thanks to the user defined actions of the “conf_usb.h” file.

Enumeration requests from the host are managed in polling mode with the “usb_device_task.c”

and “usb_standard_request.c files”. The usb_task that belongs to the scheduler tasks periodi-

cally check for new control requests from the host.

5.4.1 Configuring the USB library

To enable the USB device mode of the library the USB_DEVICE_FEATURE should be defined

as ENABLED.

The device specific configuration section of “conf_usb.h” file contains the physical endpoints

numbers definition used by the device application and a set of user specific actions that can be

executed upon special events during the USB communication.

For the sample application:

#define NB_ENDPOINTS 4 //number of EP in the application including EP0

#define EP_TEMP_IN 1

#define EP_TEMP_OUT 2

#define EP_TEMP_INT_IN 3

// write here the action to associate to each USB event

// be carefull not to waste time in order not disturbing the functions

#define Usb_sof_action() sof_action();

#define Usb_wake_up_action()

#define Usb_resume_action()

#define Usb_suspend_action()

#define Usb_reset_action()

#define Usb_vbus_on_action()

#define Usb_vbus_off_action()

#define Usb_set_configuration_action()

The user action defines the users high level application to execute specific functions. For exam-

ple the user can map a function executed upon each USB start of frame event or USB bus reset.

5.4.2 About composite devices

A composite device allows a USB device to be detected as a multiple peripherals on the USB

bus. Thus a composite device declares more than one interface in its configuration descriptor.

Each interface has its own Class/SubClass/Protocol and associated high level application

behavior (for example a composite device can operate as an HID interface in association with a

device Mass Storage application).
 13

7675A–AVR–03/07

The sample composite devices that illustrate the USB software library declares two differrent

interfaces:

• A first interface with two bulk IN/bulk OUT endpoints.

• A second interface with a single interrupt IN endpoint.

5.4.3 Configuring the device descriptors

The device descriptors used for the device enumeration process are store in “usb_descriptors.c

and usb_descriptors.h” files.

The descriptors structures type are declared in “usb_descriptors.h” file, the user should declare

here all the enumeration parameters for his device configuration.

The configuration descriptor type is defined at the end of the “usb_descriptors.h” file:

// Configuration descriptor template

// The device has two interfaces

// - First interface has 2 bulk endpoints

// - Second interface has 1 interrupt IN endpoint

typedef struct

{

 S_usb_configuration_descriptor cfg_temp;

 S_usb_interface_descriptor ifc_temp;

 S_usb_endpoint_descriptor ep1_temp;

 S_usb_endpoint_descriptor ep2_temp;

 S_usb_interface_descriptor ifc_second_temp;

 S_usb_endpoint_descriptor ep3_temp;

} S_usb_user_configuration_descriptor;

The associated interfaces and endpoints parameters are declared at the begining of the

“usb_descriptors.h” file.

// USB Device descriptor

#define USB_SPECIFICATION 0x0200

#define DEVICE_CLASS 0 //! each configuration has its own class

#define DEVICE_SUB_CLASS 0 //! each configuration has its own sub-class

#define DEVICE_PROTOCOL 0 //! each configuration has its own protocol

#define EP_CONTROL_LENGTH 64

#define VENDOR_ID 0x03EB // Atmel vendor ID = 03EBh

#define PRODUCT_ID 0x0000

#define RELEASE_NUMBER 0x1000

#define MAN_INDEX 0x01

#define PROD_INDEX 0x02

#define SN_INDEX 0x03

#define NB_CONFIGURATION 1

 // CONFIGURATION

#define NB_INTERFACE 2 //! The number of interface for this configuration

#define CONF_NB 1 //! Number of this configuration

#define CONF_INDEX 0

#define CONF_ATTRIBUTES USB_CONFIG_SELFPOWERED

#define MAX_POWER 50 // 100 mA (2mA unit !)
 14

7675A–AVR–03/07

AVR276

 AVR276
 // USB Interface descriptor gen

#define INTERFACE_NB_TEMP 0 //! The number of this interface

#define ALTERNATE_TEMP 0 //! The alt settting nb of this interface

#define NB_ENDPOINT_TEMP 2 //! The number of endpoints this this

interface have

#define INTERFACE_CLASS_TEMP 0x00 //! Class

#define INTERFACE_SUB_CLASS_TEMP 0x00 //! Sub Class

#define INTERFACE_PROTOCOL_TEMP 0x00 //! Protocol

#define INTERFACE_INDEX_TEMP 0

 // USB Endpoint 1 descriptor FS

#define ENDPOINT_NB_TEMP1 (EP_TEMP_IN | 0x80)

#define EP_ATTRIBUTES_TEMP1 0x02 // BULK = 0x02, INTERUPT = 0x03

#define EP_IN_LENGTH_TEMP1 64

#define EP_SIZE_TEMP1 EP_IN_LENGTH_TEMP1

#define EP_INTERVAL_TEMP1 0x00 // Interrupt polling interval from host

 // USB Endpoint 2 descriptor FS

#define ENDPOINT_NB_TEMP2 EP_TEMP_OUT

#define EP_ATTRIBUTES_TEMP2 0x02 // BULK = 0x02, INTERUPT = 0x03

#define EP_IN_LENGTH_TEMP2 64

#define EP_SIZE_TEMP2 EP_IN_LENGTH_TEMP2

#define EP_INTERVAL_TEMP2 0x00 // Interrupt polling interval from host

 // USB Second Interface descriptor gen

#define INTERFACE_NB_SECOND_TEMP 1 //! The number of this interface

#define ALTERNATE_SECOND_TEMP 0 //! The alt settting nb of this

interface

#define NB_ENDPOINT_SECOND_TEMP 1 //! The number of endpoints this this

interface have

#define INTERFACE_CLASS_SECOND_TEMP 0x00 //! Class

#define INTERFACE_SUB_CLASS_SECOND_TEMP 0x55 //! Sub Class

#define INTERFACE_PROTOCOL_SECOND_TEMP 0xAA //! Protocol

#define INTERFACE_INDEX_SECOND_TEMP 0

 // USB Endpoint 2 descriptor FS

#define ENDPOINT_NB_TEMP3 (EP_TEMP_INT_IN | 0x80)

#define EP_ATTRIBUTES_TEMP3 0x03 // BULK = 0x02, INTERUPT = 0x03

#define EP_IN_LENGTH_TEMP3 64

#define EP_SIZE_TEMP3 EP_IN_LENGTH_TEMP2

#define EP_INTERVAL_TEMP3 20 // Interrupt polling interval from host

All these enumeration parameters are used to fill-up the descriptor fields declared in

“usb_descriptors.c” file. When the host controller performs enumeration processs, its requests

are decoded thanks to the “standard_request.c” enumeration functions and the predefined

descriptors are sent to the host controller.

5.5 Reduced host configuration

The USB library manages USB chapter 9 for a reduced host controller:

• VBUS generation and monitoring

• Connection of the peripheral

• Disconnection of the peripheral
 15

7675A–AVR–03/07

• Enumeration and identification of the connected peripheral

• Configuration of the host controller pipes according to the device descriptors of the

connected peripheral

• Suspend the USB activity

• Resume and remote wake-up management

Similar to the device mode of the library, asynchronous USB events (connection, disconnection,

remote wake-up detection) are managed directly within the USB interrupt subroutine located in

the “usb_tak.c” file. The user application can execute specific functions upon these events

thanks to the user defined actions of the “conf_usb.h” file.

The connected device state and its enumeration process are managed in polling mode with the

“usb_host_task.c” and “usb_host_enum.c files”. Only critical and asynchronous device events

such as device disconnection and remote wake up detection are managed under interrupt

(“usb_task.c“ file).

To enable the USB host mode of the library the USB_HOST_FEATURE should be defined as

ENABLED.

The host specific configuration section of “conf_usb.h” file allows to select the following main

parameters:

• The VID/PID table of known devices supported by the host application

• The class/subclass/protocol table aof interfaces supported by the host application

• The maximum number of interfaces supported for a connected composite device

• The maximum number of endpoints associated to an interface

• The timeout parameters for a USB transfer (number of NAK or time delay)

Example for the sample application:

//! This table contains the VID/PID that are supported by the reduced host application

 //! VID_PID_TABLE format definition:

 //!

 //! #define VID_PID_TABLE {VID1, number_of_pid_for_this_VID1, PID11_value,...,

PID1X_Value \n

 //! ...\n

 //! ,VIDz, number_of_pid_for_this_VIDz, PIDz1_value,...,

PIDzX_Value}

 #define VID_PID_TABLE {0x03EB, 2, 0x201C, 0x2014 \

 ,0x0123, 3, 0x2000, 0x2100, 0x1258}

 //! @brief CLASS/SUBCLASS_PROTOCOL supported table list

 //!

 //! This table contains the CLASS/SUBCLASS/PROTOCOL that is supported by the reduced host

application

 //! This table definition allows to extended the reduced application device support to an

entire Class/

 //! /subclass/protocol instead of a simple VID/PID table list.

 //!

 //! CLASS_SUBCLASS_PROTOCOL format definition: \n

 //! #define CLASS_SUBCLASS_PROTOCOL {CLASS1, SUB_CLASS1,PROTOCOL1, \n

 //! ...\n

 //! CLASSz, SUB_CLASSz,PROTOCOLz}

 #define CLASS_SUBCLASS_PROTOCOL {\

 0x00, 0x00, 0x00,\

 0x00,0x55,0xAA}

 //! The size of RAM buffer reserved of descriptors manipulation

 #define SIZEOF_DATA_STAGE 250

 //! The address that will be assigned to the connected device
 16

7675A–AVR–03/07

AVR276

 AVR276
 #define DEVICE_ADDRESS 0x05

 //! The maximum number of interface that can be supported (composite device)

 #define MAX_INTERFACE_SUPPORTED 0x02

 //! The maximum number of endpoints per interface supported

 #define MAX_EP_PER_INTERFACE 3

 //! The host controller will be limited to the strict VID/PID list.

 //! When enabled, if the device PID/VID does not belongs to the supported list,

 //! the host controller library will not go to deeper configuration, but to error state.

 #define HOST_STRICT_VID_PID_TABLE DISABLE

 //! Try to configure the host pipes according to the device descriptors received

 #define HOST_AUTO_CFG_ENDPOINT ENABLE

 //! Host start of frame interrupt always enable

 #define HOST_CONTINUOUS_SOF_INTERRUPT DISABLE

 //! When Host error state detected, goto unattached state

 #define HOST_ERROR_RESTART ENABLE

 //! USB host pipes transfers use USB communication interrupt (allows to use none blocking

functions)

 #define USB_HOST_PIPE_INTERRUPT_TRANSFER ENABLE

 //! Force WDT reset upon ID pin change

 #define ID_PIN_CHANGE_GENERATE_RESET ENABLE

 //! Enable Timeout delay (time) for host transfer

 #define TIMEOUT_DELAY_ENABLE ENABLE

 //! delay 1/4sec (250ms) before timeout value

 #define TIMEOUT_DELAY 1

 //! Enable cpt NAK Timeout for host transfer

 #define NAK_TIMEOUT_ENABLE ENABLE

 //! Number of NAK handshake before timeout for transmit functions (up to 0xFFFF)

 #define NAK_SEND_TIMEOUT 0x0010

 //! NAKNumber of NAK handshake before timeout for receive functions (up to 0xFFFF)

 #define NAK_RECEIVE_TIMEOUT 0x0010

 //! For reduced host only allows to control VBUS generator with PIO PE.7

 #define SOFTWARE_VBUS_CTRL ENABLE

 #if (HOST_AUTO_CFG_ENDPOINT==FALSE)

 //! If no auto configuration of EP, map here user function

 #define User_configure_endpoint()

 #endif

 //! @defgroup host_cst_actions USB host custom actions

 //!

 //! @{

 // write here the action to associate to each USB host event

 // be carefull not to waste time in order not disturbing the functions

 #define Usb_id_transition_action()

 #define Host_device_disconnection_action()

 #define Host_device_connection_action()

 #define Host_sof_action()

 #define Host_suspend_action()

 #define Host_hwup_action()

 #define Host_device_not_supported_action()

 #define Host_device_class_not_supported_action()

 #define Host_device_supported_action()

 #define Host_device_error_action()

 //! @}
 17

7675A–AVR–03/07

6. Using the USB software library within high level USB application

6.1 Device application

The device user application task knows that the device is properly enumerated thanks to the

“Is_device_enumerated()” function that returns TRUE once the SET_CONFIGURATION request

has been received from the host.

void device_template_task(void)

{

//.. FIRST CHECK THE DEVICE ENUMERATION STATE

if (Is_device_enumerated())

{

 //.. HERE START THE USB DEVICE APPLICATIVE CODE

}

}

The “device_template_task.c” file included in the sample application code illustrates how to use

both bulk IN/OUT and interrupt endpoints associated to the interfaces declared in the configura-

tion descriptors.

6.2 Host application

The host user application communicates with the host chapter 9 library thanks to event specific

functions that allows:

• Detection of device connection/disconnection

• Get the main device characteristics (VID, PID, Class, SubClass, Protocol, Number of

interfaces, Max power supply...)

• Suspend/resume the USB bus

In addition to USB chapter 9 management, the host library also provides a set of generic func-

tions that allows to manage a bulk IN bullk OUT data flow (send and receive functions in both

polling (blocking) mode or none blocking mode under interrupt).

6.2.1 Device detection

6.2.1.1 Device connection

The function “Is_new_device_connection_event()” returns TRUE, when a new device is enumer-

ated and configured (Set Configuration request sent) with the USB host chapter 9 library.

6.2.1.2 Device disconnection

The function “Is_device_disconnection_event()” returns TRUE, when the previous configured

device just disconnect from the USB host port.

6.2.2 Configured device characteristics

The host library provides a set of functions to get the USB characteristics of the configured

device.
 18

7675A–AVR–03/07

AVR276

 AVR276
6.2.2.1 Generic information

• “Get_VID()”: returns the VID of the configured device.

• “Get_PID()”: returns the PID of the configured device.

• “Get_maxpower()” returns max power required for the configured device (2mA unit)

• “Is_device_self_powered()” returns true when the configured device is self powered.

• “Is_device_supports_remote_wakeup()” returns TRUE when the configured device supports

remote wake up feature.

• “Is_host_full_speed()” returns TRUE when the configured device is connected in full speed

mode. Connected to a low speed device, the function returns FALSE.

6.2.2.2 Interfaces, Endpoints

The host library supports devices with multiple interfaces declaration (composite devices) and

can configure the host pipes according to the receive device descriptors.

The interface parameters of the configured device are stored in an array of structures which con-

tains the interface characteristics.

S_interface interface_supported[MAX_INTERFACE_SUPPORTED]

// with

typedef struct

{

 U8 interface_nb;

 U8 altset_nb;

 U16 class;

 U16 subclass;

 U16 protocol;

 U8 nb_ep;

 U8 ep_addr[MAX_EP_PER_INTERFACE];

} S_interface;

The host library provides a set of functions to access these parameters:

• “Get_nb_supported_interface()” returns the number of supported interfaces configured for

the connected device.

• “Get_class(interface)” returns the class of the specified interface.

• “Get_subclass(interface)” returns the subclass of the specified interface.

• “Get_protocol(interface)” returns the protocol of the specified interface.

• “Get_nb_ep(s_interface)” returns the number of endpoints associeted to the specified

interface number.

• “Get_interface_number(s_interface)” returns device descriptor interface number for the

specified supported interface.

• “Get_alts_s(s_interface)” returns the number of the alternate setting value for the specified

interface.

• “Get_ep_addr(s_interface,n_ep)” returns the logical endpoint address associated to the

specified interface and endpoint number.

The host library allows “on the fly” host pipe configuration. According to the device descriptors

received, the host library allocates pipe associated to each device endpoint. A look up table

(“ep_table”) allows to link a phisical host pipe number to logical endpoint address.

U8 ep_table[MAX_EP_NB];
 19

7675A–AVR–03/07

The following functions can be used to get the crossreferences:

• “Get_ep_addr(s_interface,n_ep)” returns the logical endpoint address associated to the

specified interface and endpoint number.

• “host_get_hwd_pipe_nb(ep_addr)” returns the physical pipe number associated to a logical

endpoint address.

6.2.3 Bus activity management

6.2.3.1 Suspending the USB bus

Called from the user host application, the “Host_request_suspend()” function makes the USB

bus enter suspend mode. If the configured device supports remote wake up, the USB host

library will sent a “Set Feature Enable Remote Wake Up” request before entering suspend

mode.

The “Is_host_suspended()” functions returns TRUE when the USB is in suspend state and may

be used from the host high level application to detect the USB state.

6.2.3.2 Resuming the USB bus

The host application can resume the USB activity calling the “Host_request_resume()” function.

6.2.3.3 Remote Wake up

If the configured device supports remote wake up, this function allows to resume the USB host

activity.

6.2.4 Data transfer functions

The host library provides two type of generic functions that allow to send and receive data with

bulk IN/ bulk out pipes either in polling or interrupt mode.

6.2.4.1 Polling transfer functions

• Transmit function

U8 host_send_data(U8 pipe, U16 nb_data, U8 *buf);

This function send nb_data pointed with *buf with the physical pipe number specified.

• Receive function

U8 host_get_data(U8 pipe, U16 *nb_data, U8 *buf);

This function receives nb_data pointed with *buf with the pipe number specified. The number of

bytes to process is passed as parameter, thus when the functions returns it contains the number

of data effectively received by the function.

6.2.4.2 None blocking transfer functions

To use these functions, “USB_HOST_PIPE_INTERRUPT_TRANSFER” should be defined as

ENABLE in the host configuration section. These functions are similar to the previous blocking

one, but they return imediately without active wait for the end of the data transfer. When the data

transfer is complete or an error occurs, the callback function passed as pointer parameter is col-

led with a return status and the number of bytes processed as parameters of this callback

function.

• Transmit function

U8 host_send_data_interrupt(U8 pipe, U16 nb_data, U8 *buf, void

(*handle)(U8 status, U16 nb_byte));
 20

7675A–AVR–03/07

AVR276

 AVR276
This function send nb_data pointed with *buf with the physical pipe number specified.

• Receive function

U8 host_get_data_interrupt(U8 pipe, U16 nb_data, U8 *buf, void (*handle)(U8

status, U16 nb_byte));

This function receives nb_data pointed with *buf with the pipe number specified.

6.2.4.3 Returned values

The communication functions return the following status values:

#define PIPE_GOOD 0 //Transfer OK

#define PIPE_DATA_TOGGLE 0x01 //Data toggle error

#define PIPE_DATA_PID 0x02 //PID error

#define PIPE_PID 0x04

#define PIPE_TIMEOUT 0x08 //Time out error (no handshake received)

#define PIPE_CRC16 0x10 //CRC error

#define PIPE_STALL 0x20 //STALL handshake received

#define PIPE_NAK_TIMEOUT 0x40 //Maximum number of NAK handshake received

#define PIPE_DELAY_TIMEOUT 0x80 //Timeout error

6.2.5 Sample high level host application

The following code extracted from the host application task illustrates a typical high level host

application management using the USB host sofware library:

void host_template_task(void)

{

U16 *ptr_nb;

U16 nb;

U8 i;

ptr_nb=&nb;

// First check the host controller is in full operating mode with the B device

// attached and enumerated

if(Is_host_ready())

{

// New device connection (executed only one time after device connection)

if(Is_new_device_connection_event())

{

for(i=0;i<Get_nb_supported_interface();i++)

{

// First interface with two bulk IN/OUT pipes

if(Get_class(i)==0x00 && Get_subclass(i)==0x00 && Get_protocol(i)==0x00)

{

//Get correct physical pipes associated to IN/OUT Endpoints

if(Is_ep_addr_in(Get_ep_addr(i,0)))

{ //Yes associate it to the IN pipe

pipe_in=host_get_hwd_pipe_nb(Get_ep_addr(i,0));

pipe_out=host_get_hwd_pipe_nb(Get_ep_addr(i,1));

}

else

{ //No, invert...

pipe_in=host_get_hwd_pipe_nb(Get_ep_addr(i,1));

pipe_out=host_get_hwd_pipe_nb(Get_ep_addr(i,0));

}

}

 21

7675A–AVR–03/07

// Seconf interface with interrupt IN pipe

if(Get_class(i)==0x00 && Get_subclass(i)==0x55 && Get_protocol(i)==0xAA)

{

pipe_interrupt_in=host_get_hwd_pipe_nb(Get_ep_addr(i,0));

Host_select_pipe(pipe_interrupt_in);

Host_continuous_in_mode();

Host_unfreeze_pipe();

}

}

}

// Firt interface (bulk IN/OUT) management

// In polling mode

// The sample task sends 64 byte through pipe nb2...

sta=host_send_data(pipe_out,64,tab);

// And receives 64bytes from pipe nb 1...

*ptr_nb=64;

sta=host_get_data(pipe_in,ptr_nb,tab);

// Second interface management (USB interrupt IN pipe)

Host_select_pipe(pipe_interrupt_in);

if(Is_host_in_received())

{

if(Is_host_stall()==FALSE)

{

i=Host_read_byte();

Host_read_byte();

}

Host_ack_in_received(); Host_send_in();

}

// Here an example of an applicative request to go to USB suspend ...

if(Is_hwb())

{

Host_request_suspend();

}

}

// Here an applicative example of resume request...

if(Is_host_suspended() && Is_joy_select())

{

Host_request_resume();

}

 //Device disconnection...

 if(Is_device_disconnection_event())

 {

 //Put here code to be executed upon device disconnection...

 }

}

 22

7675A–AVR–03/07

AVR276

 AVR276
7. FAQ

7.1 Device mode

7.1.1 How to change the VID & the PID?

The VID (Vendor ID) and the PID (Product ID) allow the identification of the device by the host.

Each manufacturer should have its own VID, which will be the same for all products (it is

assigned by USB org). Each product should have its own PID (it is assigned by the

manufacturer).

The value of the VID and the PID are defined in usb_descriptor.h. To change them you have to

change the values below:

// USB Device descriptor

#define VENDOR_ID 0x03EB // Atmel vendor ID = 03EBh

#define PRODUCT_ID 0x201C

7.1.2 How can I change the string descriptors value?

The value of the string descriptors are defined in usb_descriptor.h. For example to change the

product name value, you have to change the following values:

The length of the string value:

#define USB_PN_LENGTH 18

The String value:

#define USB_PRODUCT_NAME \

{ Usb_unicode('A') \

 ,Usb_unicode('V') \

 ,Usb_unicode('R') \

 ,Usb_unicode(' ') \

 ,Usb_unicode('U') \

 ,Usb_unicode('S') \

 ,Usb_unicode('B') \

 ,Usb_unicode(' ') \

 ,Usb_unicode('M') \

 ,Usb_unicode('O') \

 ,Usb_unicode('U') \

 ,Usb_unicode('S') \

 ,Usb_unicode('E') \

 ,Usb_unicode(' ') \

 ,Usb_unicode('D') \

 ,Usb_unicode('E') \

 ,Usb_unicode('M') \

 ,Usb_unicode('O') \

}

7.1.3 How can I configure my device in self-powered or bus-powered mode?

The parameter to configure the device in self-powered or bus-powered mode is defined in

usb_descriptor.h file. Hereunder the definition of each mode.
 23

7675A–AVR–03/07

bus-power mode:

// USB Configuration descriptor

#define CONF_ATTRIBUTES USB_CONFIG_BUSPOWERED

Self-power mode:

// USB Configuration descriptor

#define CONF_ATTRIBUTES USB_CONFIG_SELFPOWERED

7.1.4 How can I add a new descriptor?

To add a new descriptor to your application, you have to follow the steps below:

1. Define the values of the descriptor parameters and its stucture type in

usb_descriptors.h file.

For example the HID descriptor and its structure should be defined in usb_descriptors.h file as

shown below:

/* ____HID descriptor___*/

#define HID 0x21

#define REPORT 0x22

#define SET_REPORT 0x02

#define HID_DESCRIPTOR 0x21

#define HID_BDC 0x1001

#define HID_COUNTRY_CODE 0x00

#define HID_CLASS_DESC_NB 0x01

#define HID_DESCRIPTOR_TYPE 0x22

/*_____ U S B H I D D E S C R I P T O R

_________________________________*/

typedef struct {

 U8 bLength; /* Size of this descriptor in bytes */

 U8 bDescriptorType; /* HID descriptor type */

 U16 bscHID; /* Binay Coded Decimal Spec. release */

 U8 bCountryCode; /* Hardware target country */

 U8 bNumDescriptors; /* Number of HID class descriptors to follow */

 U8 bRDescriptorType; /* Report descriptor type */

 U16 wDescriptorLength; /* Total length of Report descriptor */

} S_usb_hid_descriptor;

2. Add the new descriptor to the s_usb_user_configuration_descriptor structure in

usb_descriptors.h file:

typedef struct

{

 S_usb_configuration_descriptor cfg_mouse;

 S_usb_interface_descriptor ifc_mouse;

 S_usb_hid_descriptor hid_mouse;

 S_usb_endpoint_descriptor ep1_mouse;

} S_usb_user_configuration_descriptor;
 24

7675A–AVR–03/07

AVR276

 AVR276
3. In the File usb_descriptors.c, add the size of the new descriptor to the wTotalLength

parameter of the configuration descriptor and add the descriptor value (see the example below):

code S_usb_user_configuration_descriptor usb_conf_desc = {

 { sizeof(S_usb_configuration_descriptor)

 , CONFIGURATION_DESCRIPTOR

 , Usb_write_word_enum_struc(sizeof(S_usb_configuration_descriptor)\

 +sizeof(S_usb_interface_descriptor) \

 +sizeof(S_usb_hid_descriptor) \

 +sizeof(S_usb_endpoint_descriptor) \

)

 , NB_INTERFACE

 , CONF_NB

 , CONF_INDEX

 , CONF_ATTRIBUTES

 , MAX_POWER

 }

 ,

 { sizeof(S_usb_interface_descriptor)

 , INTERFACE_DESCRIPTOR

 , INTERFACE_NB_MOUSE

 , ALTERNATE_MOUSE

 , NB_ENDPOINT_MOUSE

 , INTERFACE_CLASS_MOUSE

 , INTERFACE_SUB_CLASS_MOUSE

 , INTERFACE_PROTOCOL_MOUSE

 , INTERFACE_INDEX_MOUSE

 }

 ,

 { sizeof(S_usb_hid_descriptor)

 , HID_DESCRIPTOR

 , HID_BDC

 , HID_COUNTRY_CODE

 , HID_CLASS_DESC_NB

 , HID_DESCRIPTOR_TYPE

 , Usb_write_word_enum_struc(sizeof(S_usb_hid_report_descriptor_mouse))

 }

 ,

 { sizeof(S_usb_endpoint_descriptor)

 , ENDPOINT_DESCRIPTOR

 , ENDPOINT_NB_1

 , EP_ATTRIBUTES_1

 , Usb_write_word_enum_struc(EP_SIZE_1)

 , EP_INTERVAL_1

 }

};

4. Do not forget to add all functions related to manage this new descriptor.
 25

7675A–AVR–03/07

7.1.5 How can I add a new endpoint?

To configure a new endpoint, follow the steps below:

1. As explained in the USB descriptors section, an endpoint belongs to an interface. The

first thing to do to add a new endpoint, is to increment by one to the NB_ENDPOINT

parameter value. This value is defined in usb_descriptor.h file and it belong to the inter-

face descriptor prameters.

// USB Interface descriptor

#define INTERFACE_NB xx

#define ALTERNATE xx

#define NB_ENDPOINT xx//This parameter=the endpoints number of the

interface

#define INTERFACE_CLASS xx

#define INTERFACE_SUB_CLASS xx

#define INTERFACE_PROTOCOL xx

#define INTERFACE_INDEX xx

2. The next step is to define the endpoint descriptor values . These values have to be

defined in usb_descriptors.h.

// USB Endpoi

nt 1 descriptor FS

#define ENDPOINT_NB_1 (EP_MOUSE_IN | 0x80)

#define EP_ATTRIBUTES_1 0x03 // BULK = 0x02, INTERUPT = 0x03

#define EP_IN_LENGTH_1 8

#define EP_SIZE_1 EP_IN_LENGTH_1

#define EP_INTERVAL_1 0x02 // Interrupt polling interval from host

EP_MOUSE_IN is defined in conf_USB.h to specify the endpoint number used by the

application.

3. Add the new endpoint descriptor to the configuration descriptor (proceed as explained

in the previous FAQ point).

4. Add the hardware initialization call in usb_specific_request.c

void usb_user_endpoint_init(U8 conf_nb)

{

 usb_configure_endpoint(EP_MOUSE_IN, \

 TYPE_INTERRUPT, \

 DIRECTION_IN, \

 SIZE_8, \

 ONE_BANK, \

 NYET_ENABLED);

}qsd
 26

7675A–AVR–03/07

AVR276

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to anyintellectu-
alproperty right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF
SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWAR-
RANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL
OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMA-
TION) ARISING OUTOF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES. Atmel makes norepresentationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make
changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein.
Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended,
authorized, or warranted for useas components in applications intended to support or sustainlife.

Atmel Corporation Atmel Operations

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl

Route des Arsenaux 41

Case Postale 80

CH-1705 Fribourg

Switzerland

Tel: (41) 26-426-5555

Fax: (41) 26-426-5500

Asia

Room 1219

Chinachem Golden Plaza

77 Mody Road Tsimshatsui

East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Memory

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle

13106 Rousset Cedex, France

Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Scottish Enterprise Technology Park

Maxwell Building

East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000

Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2

Postfach 3535

74025 Heilbronn, Germany

Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00

Fax: (33) 4-76-58-34-80

Literature Requests

www.atmel.com/literature

©2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and Everywhere You Are® are the trademarks or regis-

tered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
 Printed on recycled paper.

7675A–AVR–03/07

	Features
	1. Description
	1.1 Overview
	1.2 Limitations
	1.3 Terminology

	2. Coding Style
	3. USB Bus
	3.1 Bus topology
	3.2 USB Descriptors
	3.2.1 Device Descriptor
	3.2.2 Configuration Descriptor
	3.2.3 Interface Descriptor
	3.2.4 Endpoint Descriptor

	4. Firmware Architecture
	4.1 About the sample application
	4.2 Source files architecture

	5. Configuring the USB software library
	5.1 Global configuration
	5.2 Scheduler configuration
	5.3 USB library configuration
	5.4 Device configuration
	5.4.1 Configuring the USB library
	5.4.2 About composite devices
	5.4.3 Configuring the device descriptors

	5.5 Reduced host configuration

	6. Using the USB software library within high level USB application
	6.1 Device application
	6.2 Host application
	6.2.1 Device detection
	6.2.1.1 Device connection
	6.2.1.2 Device disconnection

	6.2.2 Configured device characteristics
	6.2.2.1 Generic information
	6.2.2.2 Interfaces, Endpoints

	6.2.3 Bus activity management
	6.2.3.1 Suspending the USB bus
	6.2.3.2 Resuming the USB bus
	6.2.3.3 Remote Wake up

	6.2.4 Data transfer functions
	6.2.4.1 Polling transfer functions
	6.2.4.2 None blocking transfer functions
	6.2.4.3 Returned values

	6.2.5 Sample high level host application

	7. FAQ
	7.1 Device mode
	7.1.1 How to change the VID & the PID?
	7.1.2 How can I change the string descriptors value?
	7.1.3 How can I configure my device in self-powered or bus-powered mode?
	7.1.4 How can I add a new descriptor?
	7.1.5 How can I add a new endpoint?

