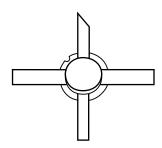
AT-64020

Up to 4 GHz Linear Power Silicon Bipolar Transistor

Data Sheet

Description


The AT-64020 is a high performance NPN silicon bipolar transistor housed in a hermetic BeO disk package for good thermal characteristics. This device is designed for use in medium power, wide band amplifier and oscillator applications operating over VHF, UHF and microwave frequencies.

Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, self-alignment techniques, and gold metallization in the fabrication of these devices. The use of ion-implanted ballast resistors ensures uniform current distribution through the multiple emitter fingers.

Features

- High Output Power:
 27.5 dBm Typical P_{1 dB} at 2.0 GHz
 26.5 dBm Typical P_{1 dB} at 4.0 GHz
- High Gain at 1 dB Compression: 10.0 dB Typical G_{1 dB} at 2.0 GHz 6.5 dB Typical G_{1 dB} at 4.0 GHz
- 35% Total Efficiency
- · Emitter Ballast Resistors
- · Hermetic, Metal/Beryllia Package

200 mil BeO Package

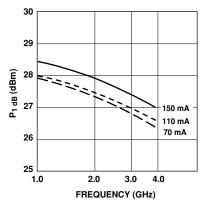
AT-64020 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V_{EBO}	Emitter-Base Voltage	V	2
V_{CBO}	Collector-Base Voltage	V	40
V_{CEO}	Collector-Emitter Voltage	V	20
I_{C}	Collector Current	mA	200
P_{T}	Power Dissipation [2,3]	W	3
$T_{\rm j}$	Junction Temperature	°C	200
T_{STG}	Storage Temperature	°C	-65 to 200

Thermal Resistance $[2,4]$:	
$\theta_{jc} = 40^{\circ}\text{C/W}$	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 25 mW/°C for $T_C > 80$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section "Thermal Resistance" for more information.


Electrical Specifications, $T_A=25^{\circ}C$

Symbol	Parameters and Test Conditions ^[1]	Units	Min.	Тур.	Max.	
$ S_{21E} ^2$	Insertion Power Gain; $V_{\rm CE}$ = 16 V, $I_{\rm C}$ = 110 mA	f = 2.0 GHz f = 4.0 GHz	dB		7.0 2.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression V_{CE} = 16 V, I_{C} = 110 mA	dBm	26.5	27.5 26.5		
$G_{1 dB}$	1 dB Compressed Gain; $V_{\rm CE}$ = 16 V, $I_{\rm C}$ = 110 mA	f = 2.0 GHz f = 4.0 GHz	dB	8.5	10.0 6.5	
η_{T}	Total Efficiency at 1 dB Compression: $V_{CE} = 16 \text{ V}, I_{C} = 110 \text{ mA}$	%		35.0		
h_{FE}	Forward Current Transfer Ratio; V_{CE} = 8 V, I_{C} = 110 mA	_	20	50	200	
I_{CBO}	Collector Cutoff Current; $V_{CB} = 16 \text{ V}$	μA			100	
I_{EBO}	Emitter Cutoff Current; $V_{EB} = 1 V$	μΑ			5.0	

Note:

^{1.} $\eta_T = (RF \ {\rm Output} \ {\rm Power})/(RF \ {\rm Input} \ {\rm Power} + V_{CE} I_C).$

AT-64020 Typical Performance, $T_{A}=25^{\circ}\text{C}$

 $\label{eq:Figure 1. Power Output @ 1 dB Gain} \\ Compression vs. \ Frequency and \\ Collector Current. \ V_{CE} = 16 \ V. \\$

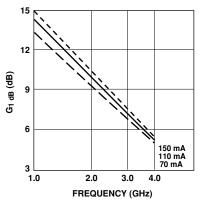


Figure 2. 1 dB Compressed Gain vs. Frequency and Collector Current. $V_{\rm CE}$ = 16 V.

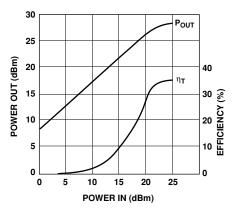
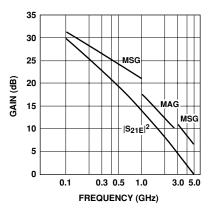
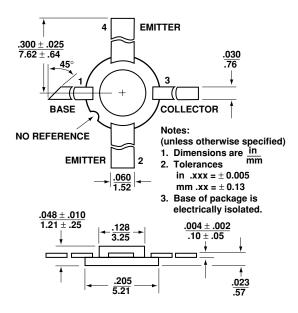



Figure 3. Output Power and Efficiency vs. Input Power. $V_{CE} = 16 \text{ V}, I_C = 110 \text{ mA}, f = 4.0 \text{ GHz}.$

 $\label{eq:figure 4.} Figure \ 4. \ Insertion \ Power \ Gain, \\ Maximum \ Available \ Gain \ and \\ Maximum \ Stable \ Gain \ vs. \ Frequency. \\ V_{CE} = 16 \ V, \ I_C = 110 \ mA.$

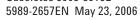
$\textbf{Typical Scattering Parameters,} \ \ \text{Common Emitter,} \ \ Z_{O} = 50 \ \Omega, \ T_{A} = 25 ^{\circ}\text{C}, \ V_{CE} = 16 \ V, \ I_{C} = 110 \ mA \ A = 25 ^{\circ}\text{C}$


Freq.	;	$\overline{\mathbf{S}_{11}}$	S_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.1	.61	-116	30.0	31.51	130	-33.1	.022	57	.67	-48
0.5	.75	-173	18.4	8.27	86	-28.8	.036	41	.23	-88
1.0	.75	171	12.5	4.23	66	-27.4	.043	49	.20	-100
1.5	.74	159	9.2	2.90	50	-23.5	.067	48	.21	-110
2.0	.74	148	7.0	2.23	35	-21.6	.083	46	.25	-120
2.5	.73	141	5.2	1.82	26	-19.8	.103	47	.27	-127
3.0	.73	130	3.8	1.56	12	-17.5	.133	41	.32	-135
3.5	.74	119	2.7	1.37	-2	-16.1	.157	35	.35	-146
4.0	.73	107	1.8	1.23	-16	-14.7	.186	26	.38	-158
4.5	.72	93	0.9	1.11	-30	-13.3	.217	18	.41	-168
5.0	.71	79	0.1	1.01	-43	-11.8	.256	8	.42	179

A model for this device is available in the DEVICE MODELS section.

Ordering Information

Part Number	No. of Devices				
AT-64020	10				


200 mil BeO Package Dimensions

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.

Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5965-8915E

