High-Voltage Surface Mount Schottky Rectifier

High Barrier Technology for Improved High Temperature Performance

DO-214AA (SMB)

FEATURES

- Low profile package
- Guardring for overvoltage protection
- Ideal for automated placement
- Low power losses, high efficiency
- Low forward voltage drop COMPLIANT
- Low leakage current
- High surge capability
- Meets MSL level 1, per J-STD-020, LF maximum peak of $260^{\circ} \mathrm{C}$
- Solder dip $260{ }^{\circ} \mathrm{C} 40 \mathrm{~s}$
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

TYPICAL APPLICATIONS

For use in low voltage high frequency inverters, freewheeling, dc-to-dc converters, and polarity protection applications.

MECHANICAL DATA

Case: DO-214AA (SMB)
Epoxy meets UL 94V-0 flammability rating
Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD22-B102
E3 suffix for consumer grade, meets JESD 201 class 1A whisker test, HE3 suffix for high reliability grade (AEC Q101 qualified), meets JESD 201 class 2 whisker test
Polarity: Color band denotes the cathode end

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)				
PARAMETER	SYMBOL	SS2H9	SS2H10	UNIT
Device marking code		MS9	MS10	
Maximum repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	90	100	V
Working peak reverse voltage	$\mathrm{V}_{\text {RWM }}$	90	100	V
Maximum DC blocking voltage	$V_{D C}$	90	100	V
Maximum average forward rectified current at: $\mathrm{T}_{\mathrm{L}}=130^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	2.0		A
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	$\mathrm{I}_{\text {FSM }}$	75		A
Peak repetitive reverse surge current at $t_{p}=2.0 \mu \mathrm{~s}, 1 \mathrm{kHz}$	$\mathrm{I}_{\text {RRM }}$	1.0		A
Voltage rate of change (rated V_{R})	$\mathrm{dV} / \mathrm{dt}$	10000		$\mathrm{V} / \mu \mathrm{s}$
Operating junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	- 65 to +175		${ }^{\circ} \mathrm{C}$

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	TEST CONDITIONS		SYMBOL	SS2H9	SS2H10	UNIT
Maximum instantaneous forward	$\mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~A}$	$\mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	V_{F}	0.79	V	
voltage $^{(1)}$	$\mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~A}$	$\mathrm{~T}_{J}=125^{\circ} \mathrm{C}$		0.65	V	
Maximum reverse current		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	I_{R}	10	$\mu \mathrm{~A}$	
at rated $\mathrm{V}_{\mathrm{R}}{ }^{(2)}$		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		4	mA	

Notes:

(1) Pulse test: 300μ s pulse width, 1% duty cycle
(2) Pulse test: Pulse width $\leq 40 \mathrm{~ms}$

THERMAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)				
PARAMETER	SYMBOL	SS2H9	SS2H10	UNIT
Maximum thermal resistance junction to lead $\mathrm{T}_{\mathrm{L}}=25^{\circ} \mathrm{C}^{(1)}$	$\mathrm{R}_{\text {ӨJA }}$		80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

(1) Units mounted on P.C.B. with $0.2 \times 0.2^{\prime \prime}(5.0 \times 5.0 \mathrm{~mm})$ copper pad areas

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
SS2H9-E3/52T	0.096	$52 T$	750	$7{ }^{\prime \prime}$ diameter plastic tape and reel	
SS2H9-E3/5BT	0.096	$5 B T$	3200	$13^{\prime \prime}$ diameter plastic tape and reel	
SS2H9HE3/52T $T^{(1)}$	0.096	$52 T$	750	$7 "$ diameter plastic tape and reel	
SS2H9HE3/5BT ${ }^{(1)}$	0.096	$5 B T$	3200	$13^{\prime \prime}$ diameter plastic tape and reel	

Note:
(1) Automotive grade AEC Q101 qualified

RATINGS AND CHARACTERISTICS CURVES

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 1. Forward Current Derating Curve

Figure 2. Max Non-Repetitive Peak Forward Surge Current

Figure 3. Typical Instanteous Forward Characteristics

Figure 4. Typical Reverse Characteristics

Figure 5. Typical Junction Capacitance

Figure 6. Typical Transient Thermal Impedance Per Leg

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

